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1 Introduction

‘LibTMCG’ is a C++ library for creating secure and verifiable online card games. The library
contains a sort of useful classes, algorithms, and high-level protocols to support an application
programmer in writing such software. The most remarkable feature is the absence of a trusted
third party (TTP), i.e., neither a central game server nor trusted hardware components are
necessary. Thus, with the present library there is no need for an independent referee, because the
applied protocols provide a basic level of confidentiality and verifiability by itself. Consequently,
the library is well-suited for peer-to-peer (P2P) environments where no TTP is available. Of
course, we cannot avoid that malicious players share information about their private cards,
but the protocols ensure that the shuffle of the deck is performed randomly (presumed that at
least one player is honest) and thus the cards will be distributed uniformly among the players.
Further, no coalition can learn the private cards of a player against his will (except for trivial
conclusions). The corresponding cryptographic problem, actually called “Mental Poker”, has
been studied since 1979 (Shamir, Rivest, and Adleman) by many authors. LibTMCG provides
the first practical implementation of such sophisticated cryptographic protocols.

The security and the verifiability rely on advanced cryptographic techniques—the so-called
zero-knowledge proofs. Using these ‘building blocks’ the high-level protocols minimize the effect
of coalitions and preserve the confidentiality of the players’ strategy, i.e., the players are not
required to reveal their cards at the end of the game in order to show that they did not cheat.
This important property is often required in card games like Poker, where not all cards are
opened during the play and the applied individual strategy must be kept secret.

LibTMCG is Free Software according to the definition of the Free Software Foundation. The
source code is released under the GNU General Public License Version 2.

1.1 Further Reading

The cryptographic background and a detailed discussion of the implementation issues are beyond
the scope of this manual. The interested reader is referred to the following scientific papers:

[Sc98]: Christian Schindelhauer. Toolbox for Mental Card Games.
Technical Report A-98-14, University of Lübeck, 1998.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.6679

[BS03]: Adam Barnett and Nigel P. Smart. Mental Poker Revisited.
In K.G. Paterson (Ed.): Cryptography and Coding 2003, Lecture Notes in Computer
Science 2898, pp. 370–383, 2003.
http://dx.doi.org/10.1007/978-3-540-40974-8_29

[Gr05]: Jens Groth. A Verifiable Secret Shuffle of Homomorphic Encryptions.
Cryptology ePrint Archive, Report 2005/246, 2005.
http://eprint.iacr.org/2005/246

[Gr10]: Jens Groth. A Verifiable Secret Shuffle of Homomorphic Encryptions.
Journal of Cryptology, Volume 23 Issue 4, pp. 546–579, 2010.
http://dx.doi.org/10.1007/s00145-010-9067-9

[HSSV09]: Sebastiaan de Hoogh, Berry Schoenmakers, Boris Skoric, and
Jose Villegas. Verifiable Rotation of Homomorphic Encryptions.
Proceedings of Public Key Cryptography 2009, Lecture Notes in Computer Science
5443, pp. 393–410, 2009.
http://dx.doi.org/10.1007/978-3-642-00468-1_22

[St04]: Heiko Stamer. Kryptographische Skatrunde. (in German)
Offene Systeme (ISSN 1619-0114), 4:10–30, 2004.
http://www.nongnu.org/libtmcg/OS-4-2004-openskat_rev2005.pdf

https://en.wikipedia.org/wiki/Mental_poker
https://en.wikipedia.org/wiki/Zero-knowledge_proof
http://www.fsf.org/licensing/essays/free-sw.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.6679
http://dx.doi.org/10.1007/978-3-540-40974-8_29
http://eprint.iacr.org/2005/246
http://dx.doi.org/10.1007/s00145-010-9067-9
http://dx.doi.org/10.1007/978-3-642-00468-1_22
http://www.nongnu.org/libtmcg/OS-4-2004-openskat_rev2005.pdf
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[St05]: Heiko Stamer. Efficient Electronic Gambling: An Extended Implementa-
tion of the Toolbox for Mental Card Games.
Proceedings of the Western European Workshop on Research in Cryptology (WE-
WoRC 2005), Lecture Notes in Informatics P-74, pp. 1–12, 2005.
http://www.nongnu.org/libtmcg/WEWoRC2005_proc.pdf

[FS87]: Amos Fiat and Adi Shamir. How To Prove Yourself: Practical Solutions
to Identification and Signature Problems.
Advances in Cryptology – Proceedings of CRYPTO’ 86. Lecture Notes in Computer
Science 263, pp. 186–194, 1987.
http://dx.doi.org/10.1007/3-540-47721-7_12

[BR93, BR95]: Mihir Bellare and Phillip Rogaway. Random Oracles are
Practical: A Paradigm for Designing Efficient Protocols.
Proceedings of 1st ACM Conference on Computer and Communications Security,
pp. 62–73, 1993.
http://cseweb.ucsd.edu/~mihir/papers/ro.html

[BR96]: Mihir Bellare and Phillip Rogaway. The Exact Security of Digital
Signatures – How to Sign with RSA and Rabin.
Advances in Cryptology – Proceedings of EUROCRYPT’ 96, Lecture Notes in Com-
puter Science 1070, pp. 399–416, 1996.
http://web.cs.ucdavis.edu/~rogaway/papers/exact.pdf

[Bo01]: Dan Boneh. Simplified OAEP for the RSA and Rabin Functions.
Advances in Cryptology – Proceedings of CRYPTO’ 01, Lecture Notes in Computer
Science 2139, pp. 275–291, 2001.
http://crypto.stanford.edu/~dabo/abstracts/saep.html

[GMR98]: Rosario Gennaro, Daniele Micciancio, and Tal Rabin. An Effi-
cient Non-Interactive Statistical Zero-Knowledge Proof System for Quasi-Safe Prime
Products.
Proceedings of 5th ACM Conference on Computer and Communication Security,
pp. 67–72, 1998.
https://cseweb.ucsd.edu/~daniele/papers/GMR.html

[JL00]: Stanislaw Jarecki and Anna Lysyanskaya. Adaptively Secure Thresh-
old Cryptography: Introducing Concurrency, Removing Erasures.
Advances in Cryptology – Proceedings of EUROCRYPT’ 00, Lecture Notes in Com-
puter Science 1807, pp. 221–242, 2000.
http://www.iacr.org/archive/eurocrypt2000/1807/18070223-new.pdf

[CKPS01]: Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor
Shoup. Secure and Efficient Asynchronous Broadcast Protocols.
Advances in Cryptology – Proceedings of CRYPTO’ 01, Lecture Notes in Computer
Science 2139, pp. 524–541, 2001.
http://shoup.net/papers/ckps.pdf

1.2 Getting Started

This manual describes the application programming interface of LibTMCG. All relevant data
types, public classes and security parameters are explained. The reader should have an advanced
knowledge in applied cryptography and C++ programming. Reference is made at this point to
the famous Handbook of Applied Cryptography for a brief introduction on the first topic. For
the underlying communication model and some broadcast primitives the outstanding textbook
Introduction to Reliable and Secure Distributed Programming and the corresponding exercises
are recommended.

http://www.nongnu.org/libtmcg/WEWoRC2005_proc.pdf
http://dx.doi.org/10.1007/3-540-47721-7_12
http://cseweb.ucsd.edu/~mihir/papers/ro.html
http://web.cs.ucdavis.edu/~rogaway/papers/exact.pdf
http://crypto.stanford.edu/~dabo/abstracts/saep.html
https://cseweb.ucsd.edu/~daniele/papers/GMR.html
http://www.iacr.org/archive/eurocrypt2000/1807/18070223-new.pdf
http://shoup.net/papers/ckps.pdf
http://cacr.uwaterloo.ca/hac/
http://www.distributedprogramming.net/
http://www.distributedprogramming.net/handson.shtml
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This document follows, in style and rarely in phrasing, the Libgcrypt Reference Manual.
Thus don’t be surprised, if you recognize some obvious analogies.

1.3 Preliminaries

The most card games are played with a regular card deck, i.e., cards where the pattern on the
front side (face) determines the card type (e.g. the King of Spades ♠, the Seven of Hearts ♥,
the Ace of Club ♣, or the Jack of Diamonds ♦) and where the back sides (face down) of all
cards are indistinguishable. Only such ‘regular’ card decks are supported by LibTMCG and the
provided card encoding schemes.

1.3.1 Terminology

The following list defines some common terms that are subsequently used in the manual.

Player: A player is an active participant in an electronic card game.

Observer: An observer is an passive party who watches the game.

Card: The term card means the electronic representation of a playing card.

Card Type: The card type is a nonnegative integer which corresponds to the pattern
on the picture side of a real playing card. We assume here that such a natural
encoding always exists.

Masking: Masking is a process which aim is to transform the card representation
such that the input card and the result cannot be linked (except for trivial conclu-
sions). Roughly speaking, masking is the (re-)encryption of a card representation
such that the original card type is preserved.

Card Secret: The card secret contains all random values used in a masking operation.
These values must be kept secret until the card is publicly revealed. Otherwise the
corresponding output of the masking transformation is linkable and other players
may learn the card type.

Open Card: An open card is a card whose type can be easily determined by all
players and usually by observers as well.

Masked Card: A masked card (also known as face-down card) is a card whose type
is unknown to a subset of players. It can be only revealed, if all players cooperate
in a common computation of the type.

Private Card: A private card is a card whose type is only known to its owner. As
long as the owner does not corporate the type of the private card stays hidden to
all other players (except for trivial conclusions).

Stack: A stack is a not necessarily disjoint subset of the whole card deck.

Prover and Verifier: The prover is a player who shows some property to another
party called verifier. For example, he wants to show that a masking operation was
performed correctly, i.e., the card type is preserved by the transformation.

1.3.2 Security

“Mental Poker” solutions cannot prevent that malicious players exchange private information,
for example, by telephone or Internet chat. Cryptographic protocols can only minimize the effect
of such colluding parties and should try to protect the confidentiality for honest players. But
even this small protection often relies on number-theoretical assumptions which are only believed
to be true, i.e., problems like factoring products of large primes or computing discrete logarithms
are only believed to be hard. That means, strict mathematical proofs1 for the hardness of these
problems are not known, and it is not very likely that such proofs will ever be found. However,

1 For instance, a “tight reduction” to a known hard problem in the sense of complexity theory.

https://gnupg.org/documentation/manuals/gcrypt/
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almost all public key cryptosystems rely on such assumptions and therefore you should not care
about this issue, as long as reasonable security parameters are chosen and practical quantum
computers are out of range.

LibTMCG was originally designed to provide security in the “honest-but-curious” (aka “semi-
honest” or passive) adversary model. That means, all participants follow the protocol instruc-
tions properly but they may gather information and share them within a coalition to obtain an
advantage in the game. Thus we are basically not concerned with robustness and availability
issues which are hard to solve in almost asynchronous environments like the Internet. However,
the most operations are verifiable such that cheating can be detected. To obtain this verifia-
bility, the protocols deploy so-called zero-knowledge proofs which yield no further knowledge
but the validity of a statement. The soundness error of these proofs is bounded by a fixed
security parameter κ. Depending on your application scenario this parameter should be chosen
such that there is a reasonable tradeoff between the cheating probability (which is less or equal
than 2−κ) and the produced computational and communication complexity. LibTMCG also
uses so-called zero-knowledge proofs of knowledge due to Bellare and Goldreich (see On defining
proofs of knowledge, Advances in Cryptology – Proceedings of CRYPTO’ 92, 1992), however, for
convenience we will not further distinguish between these building blocks. Finally, some of the
protocols (e.g. the efficient shuffle argument by Groth) are only zero-knowledge with respect to
a so-called “honest verifier” who follows all protocol instructions faithfully. Since version 1.2.0
of LibTMCG we use a two-party version of a distributed coin flipping protocol by Jarecki and
Lysyanskaya [JL00] to protect against malicious verifiers in that case.

Unfortunately, in practice there is another substantial problem with the detection of cheaters.
It requires that an authenticated broadcast channel has been set up, where all players have
read/write access. There exist protocols (so-called “reliable broadcast” or even “atomic broad-
cast”) for creating such a channel, however, only under the additional condition that the number
of parties t who act faulty or even malicious (so-called “Byzantine adversary”) is reasonable
small. In a full asynchronous environment like the Internet resilience is achievable for t < n/3
only, where n denotes the total number of parties in the protocol. LibTMCG provides a well-
known protocol due to Bracha (see An asynchronous [(n - 1)/3]-resilient consensus protocol,
Proceedings of 3rd ACM Symposium on Principles of Distributed Computing, 1984) in a slightly
optimized variant by Cachin, Kursawe, Petzold, and Shoup [CKPS01]. Please note that in most
cases the application programmer must decide, where the use of a broadcast channel is necce-
sary and appropriate. Thus, without reliable broadcast you should take into account that not
necessarily the player acting as prover is the source of evil, if a verification procedure fails. This
level of uncertainty is the main reason for our still limited adversary model.

Note that it is not known, whether the used protocols retain their zero-knowledge property,
if they are composed and executed in a concurrent setting. Thus the application programmer
should be careful and avoid parallel protocol sessions. It is an open research project to create
a protocol suite whose security can be proven in the UC-framework of Canetti (see Universally
Composable Security: A New Paradigm for Cryptographic Protocols, Cryptology ePrint Archive:
Report 2000/067) or even more elaborated UC-frameworks (see e.g. Dennis Hofheinz and Victor
Shoup: GNUC: A New Universal Composability Framework, Cryptology ePrint Archive: Report
2011/303). Furthermore, the protocols should employ concurrent zero-knowledge proofs (see
Cynthia Dwork, Moni Naor, and Amit Sahai: Concurrent Zero-Knowledge, Journal of the ACM
51(6):851–898, 2004).

Please also note, that in some protocols the Fiat-Shamir heuristic [FS87] is used to turn inter-
active special honest verifier zero-knowledge arguments resp. proofs into non-interactive versions
in the random oracle model. However, there are some theoretical (see e.g. Nir Bitansky, Dana
Dachman-Soled, Sanjam Garg, Abhishek Jain, Yael Tauman Kalai, Adriana Lopez-Alt, and
Daniel Wichs: Why ’Fiat-Shamir for Proofs’ Lacks a Proof, TCC 2013, LNCS 7785, 2013) and
pratical (see David Bernhard, Olivier Pereira, Bogdan Warinschi: How Not to Prove Yourself:

https://en.wikipedia.org/wiki/Random_oracle
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Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios, ASIACRYPT 2012, LNCS 7658,
2012) concerns that show the insecurity of Fiat-Shamir heuristic w.r.t. the soundness of the ar-
gument resp. proof. That means, if deterministic hash functions are used as public coin [BR93],
then the random oracle assumption obviously does not hold and therefore a malicious prover can
manipulate the challenges in order to cheat and thus violates the soundness property. On the
other hand, the Fiat-Shamir heuristic, and in general the non-interactivness of the transformed
protocols, protect against a malicious verifier. Thus it is another important measure to deal
with the limitation of honest verifier zero-knowledge proofs resp. arguments of knowledge with-
out loosing their efficiency. However, non-interactive protocols are necessarily malleable (when
used without unique identifiers), and the cheating verifier can generate a convincing proof of
knowledge by copying one sent by the prover in a previous iteration of the protocol. This issue
must be adressed by the application programmer, for example, by using fresh randomness in
each card or stack operation which should be verifiable.

LibTMCG was carefully implemented with respect to timing attacks (see Paul C. Kocher:
Cryptanalysis of Diffie-Hellman, RSA, DSS, and other cryptosystems using timing attacks,
CRYPTO ’95, LNCS 963, 1995). Therefore we loose some efficiency, e.g., during modular
exponentiations. However, it is strongly recommended to leave the timing attack protection
turned on, unless you know exactly where it is really not needed.

Security Advice: We have implemented all cryptographic primitives according to
the cited research papers and to the best of our knowledge. However, we can not
eliminate any possibility of contained flaws or bugs, because the implementation of
such complex protocols is always an error-prone process. Moreover, the scientific
results are sometimes controversial or even wrong. Thus we encourage readers with
advanced cryptographic background to review given references and the source code
of LibTMCG. Please report any complaint or correction proposal!

1.3.3 Communication

Most cryptographic protocols are designed for a synchronous communication model, i.e., there
is a known upper bound on message transmission delays. That means, the time period between
the point at which a protocol message is sent and the point at which the message is delivered
is smaller than this bound. Additionally, often the assumption is made that the computation
proceeds in synchronized rounds and that the parties are connected by a complete network of
private (i.e. untappable and authenticated) point-to-point channels.

There is an importand distinction between fully synchronous and partially synchronous com-
munication model with respect to coverage and the resulting adverserial power. However, a
detailed discussion of such issues is beyond the scope of this manual. The reader is referred
to the famous textbook Introduction to Reliable and Secure Distributed Programming for an
introduction and discussion on that topic.

1.4 Preparation

LibTMCG depends on three other basic libraries. Therefore you will need the corresponding
development files to build LibTMCG and your application properly. The following list gives a
short exposition of the used features and specifies the required versions:

• GNU Multiple Precision Arithmetic Library (libgmp), Version ≥ 4.2.0

The library provides a powerful framework for performing arbitrary precision arithmetic on
integers. Further reasons for choosing this dependency are the license compatibility, the
portability, the vital maintenance, and of course, the reasonable performance.

• GNU Crypto Library (libgcrypt), Version ≥ 1.6.0

The library provides some basic cryptographic algorithms (e.g. SHA-256, AES256, El-
Gamal, DSA, RSA) and an easily accessible interface for cryptographically strong pseudo

http://www.distributedprogramming.net/
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random numbers. If a version ≥ 1.7.0 is found, then also the hash function SHA-3 will be
used.

• GNU Privacy Guard Error Code Library (libgpg-error), Version ≥ 1.12

This library defines common error values, e.g., returned by the GNU Crypto Library.

We suppose that the reader is familiar with these libraries because their correct installation,
configuration, and usage is crucial to the security of the entire application.

1.5 Header Files and Name Spaces

The interface definitions of classes, data types, and security parameters2 are provided by the
central header file libTMCG.hh. You have to include this file in all of your sources, either directly
or through some other included file. Thus often you will simply write:

#include <libTMCG.hh>

There are no uniform C++ name spaces for the most parts of the library. Some classes and
data types have the common prefix TMCG_* resp. VTMF_* while others are composed of the
author names and an abbreviation of the title from the related research paper. Further there
are some function names and types that are prepended by tmcg_*. Those interfaces should be
used with care, because later they may be removed or replaced.

1.6 Building Sources

If you want to compile a source file including the libTMCG.hh header, you must make sure that
the compiler can find it in the directory hierarchy. This is achieved by adding the path of the
corresponding directory to the compilers include file search path.

However, the path to the include file has been determined at the time the source is configured.
To solve this problem, LibTMCG ships with a small helper program libTMCG-config that knows
the path to the include file and a few other configuration options. The options that need to be
added to the compiler invocation are output by the --cflags option to libTMCG-config. The
following example shows how it can be used at the command line:

g++ -c foo.cc ‘libTMCG-config --cflags‘

Adding the output of ‘libTMCG-config --cflags’ to the compilers command line will ensure
that the compiler can find the LibTMCG header file.

A similar problem occurs when linking your program with LibTMCG. Again, the compiler
has to find the library files. Therefore the correct installation path has to be added to the
library search path. To achieve this, the option --libs of libTMCG-config can be used. For
convenience, this option also outputs all other stuff (e.g. required third-party libraries) that is
required to link your program with LibTMCG (in particular, the ‘-lTMCG’ option).

The example shows how to link foo.o with LibTMCG to a program called foo:

g++ -o foo foo.o ‘libTMCG-config --libs‘

Of course, you can also combine both examples to a single command by calling the shell
script libTMCG-config with both options:

g++ -o foo foo.c ‘libTMCG-config --cflags --libs‘

2 Some security parameters are fixed at compile time of LibTMCG. Please don’t change anything unless you
know exactly what you are doing! Beside the apparent security concerns you will probably break the compat-
ibility with other applications using LibTMCG.
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1.6.1 Building Sources Using GNU Automake

You can use GNU Automake to obtain automatically generated Makefiles. If you do so then you
do not have to care about finding and invoking the libTMCG-config script at all. LibTMCG
provides an Automake extension that does all the stupid work for you.

[Macro]AM_PATH_LIBTMCG ([minimum-version], [action-if-found],
[action-if-not-found])

Check whether LibTMCG (at least version minimum-version, if given) exists on the host
system. If it is found, execute action-if-found, otherwise do action-if-not-found.

Additionally, the macro defines LIBTMCG_CFLAGS to the flags needed for compilation in order
to find the necessary header files, and LIBTMCG_LIBS to the corresponding linker flags.

You can use the defined variables in your Makefile.am as follows:

AM_CPPFLAGS = $(LIBTMCG_CFLAGS)

LDADD = $(LIBTMCG_LIBS)

1.7 Initializing the Library

The first step is the initialization of LibTMCG. The following function must be invoked early
in your program, i.e., before you make use of any other capability of LibTMCG.

[Function]bool init_libTMCG (const bool force secmem =false, const bool
gmp secmem =false, const size_t max secmem =32768)

The function checks whether the installed third-party libraries match their required versions.
Further it initializes them and returns true, if everything was sound. Otherwise false is
returned and an appropriate error message is sent to std::cerr.

The three optional arguments define the behaviour concerning the allocation of secure mem-
ory (i.e. memory that is not paged out to disk and that is overwritten by zeros before
released) from libgcrypt. By default no secure memory is used. If force_secmem is true,
than those parts of LibTMCG that use the GNU Crypto Library will allocate and use secure
memory for private keys or other secrets. However, the most classes, algorithms, and pro-
tocols of LibTMCG does not respect this option yet, because they store their secrets with
the GNU Multiple Precision Arithmetic Library. With the second option gmp_secmem the
default memory allocator of this library is replaced to use secure memory. Unfortunately,
there is no way to specify whether a big integer needs secure memory and thus all memory
is allocated in this fashion. This may lead to out of memory aborts, because the allocated
secure memory is limited (currently 32kB). The limit of libgcrypt can be adjusted by the third
parameter max_secmem, however, probably there are restrictions of the operating system (cf.
RLIMIT MEMLOCK).

Additionally, the function version_libTMCG returns a string containing the version number
of the library in a common format. It is strongly recommended to check, whether the installed
version matches your requirements.

[Function]const std::string version libTMCG ()
This function returns the version of the library in the format major.minor.revision.

Last but not least, there is a function identifier_libTMCG which returns an identifier of
LibTMCG including the version, copyright mark and license.

[Function]const std::string identifier libTMCG ()
This function returns an identifier of the library.
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2 Application Programming Interface

Now we start with a description of some important global symbols and structures.

2.1 Preprocessor Defined Global Symbols

Please note that the following macros are fixed at compile time of LibTMCG and cannot be
changed by your application. They are only provided here for informational purposes.

[Macro]TMCG_MR_ITERATIONS
Defines the number of iterations for the Miller-Rabin primality test. The default value is 64
which implies a soundness error probability ≤ 4−64.

[Macro]TMCG_MAX_ZNP_ITERATIONS
Defines the maximum number of iterations for the prover in cut-and-choose style zero-
knowledge protocols of Schindelhauer’s toolbox. The default value is 80 which limits the
soundness error probability to ≥ 2−80, however, it protects against some obvious denial-of-
service attacks from a malicious verifier.

[Macro]TMCG_GROTH_L_E
Defines the security parameter `e of Groth’s (interactive) shuffle argument [Gr05]. The default
value is 80 which implies a soundness error probability ≤ 2−80. For the intended purposes
of LibTMCG this seems to be reasonable.

[Macro]TMCG_DDH_SIZE
Defines the security parameter (finite field size in bit) of the group G which is used by the
card encoding scheme of Barnett and Smart [BS03]. The underlying assumptions are DDH,
CDH, and DLOG. The default value is 2048.

[Macro]TMCG_DLSE_SIZE
Defines the security parameter (subgroup size in bit) of the group G which is used by the
card encoding scheme of Barnett and Smart [BS03]. The underlying assumptions are DLSE
(related to DDH) and DLOG. The default value is 256.

[Macro]TMCG_AIO_HIDE_SIZE
Defines the security parameter for hiding the length of integers in derived classes from
aiounicast. The default value is 256.

[Macro]TMCG_GCRY_MD_ALGO
Defines the main message digest algorithm (i.e. hash function h()) for digital signatures
with PRab [BR96] and mask generation for Rabin encryption with SEAP [Bo01] in TMCG_

SecretKey. This algorithm is also used for the construction of a special hash function g(),
which is needed for the Fiat-Shamir heuristic [FS87]. Recently we switched1 to the hash
function SHA-256 (default value GCRY_MD_SHA2562) for improved collision resistance. Thus
we gain a security level of approximately 2128, assuming that a birthday-attack is the best
known attack against this message digest.

Please note that the security of the non-interactive zero-knowledge proofs resp. arguments
(NIZK) is proved in the so-called random oracle model (ROM), i.e., we suppose that the in-
stantiated hash function g() behaves like an ideal random function (which obviously cannot
hold in a real world scenario with deterministic computations). However, this assumption
seems to be reasonable, if the underlying hash function is collision-resistant and if it is care-
fully implemented with respect to other instantiations [BR93].

1 In former versions of LibTMCG the default value of this symbol was GCRY_MD_RMD160, i.e. the hash algorithm
RIPEMD-160 (see Dobbertin, Bosselaers, Preneel: RIPEMD-160, a strengthened version of RIPEMD, 1996),
which is a function that has only an output length of 160 bit.

2 This is also a constant defined by the GNU Crypto Library.
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[Macro]TMCG_GCRY_MAC_ALGO
Defines the message authentication algorithm for authenticated channels established by the
class aiounicast. The default value is GCRY_MAC_HMAC_SHA2563, i.e. the HMAC based
scheme with hashing algorithm SHA-256.

[Macro]TMCG_GCRY_ENC_ALGO
Defines the symmetric encryption algorithm (sometimes also called cipher) for private chan-
nels established by the class aiounicast. The default value is GCRY_CIPHER_AES2564, i.e.
the cipher AES256, which is used by LibTMCG in CFB (Cipher Feedback) mode.

[Macro]TMCG_KEYID_SIZE
Defines the length (in characters w.r.t. TMCG_MPZ_IO_BASE) for the distinctive suffix of the
unique TMCG key identifier. The default value is 8 which spans a reasonable name space for
at least 220 different TMCG keys (see TMCG_PublicKey). However, sometimes it is required
to use even smaller sizes due to artificial protocol restrictions (e.g. the IRC nickname is
sometimes restricted to 9 characters).

Each key identifier starts with the string "ID" followed by the decimal encoded value of TMCG_
KEYID_SIZE and the appended carret symbol "^". The final suffix contains TMCG_KEYID_SIZE
alphanumerical characters from the self signature of TMCG key. This signature has enough
entropy included to be used as unique key identifier.

[Macro]TMCG_KEY_NIZK_STAGE1
Defines the security parameter (number of iterations) of the NIZK proof [GMR98] (stage 1)
which convince all verifiers that the TMCG key was correctly generated. The default value
is 16 which implies a soundness error probability ≤ d−16, where d = gcd(m,φ(m)) and m
is part of the public key. This parameter is only relevant for the card encoding scheme of
Schindelhauer, where the key has a very special format.

[Macro]TMCG_KEY_NIZK_STAGE2
Defines the security parameter (number of iterations) of the NIZK proof [GMR98] (stage 2)
which convince all verifiers that the TMCG key was correctly generated. The default value
is 128 which implies a soundness error probability ≤ 2−128. This parameter is only relevant
for the card encoding scheme of Schindelhauer.

[Macro]TMCG_KEY_NIZK_STAGE3
Defines the security parameter (number of iterations) of the NIZK proof [Sc98] (stage 3)
which convince all verifiers that the TMCG key was correctly generated. The default value
is 128 which implies a soundness error probability ≤ 2−128. This parameter is only relevant
for the card encoding scheme of Schindelhauer.

[Macro]TMCG_LIBGCRYPT_VERSION
Defines the required minimum version number of the GNU Crypto Library. The default value
is "1.6.0". During the initialization of LibTMCG (see init_libTMCG) it is checked, whether
the version number of the linked shared object fulfills this condition.

[Macro]TMCG_LIBGMP_VERSION
Defines the required minimum version number of the GNU Multiple Precision Arithmetic
Library. The default value is "4.2.0". During the initialization of LibTMCG (see init_

libTMCG) it is checked, whether the version number provided by the header file gmp.h and
used at compile time of LibTMCG fulfills this condition.

3 This is also a constant defined by the GNU Crypto Library.
4 This is also a constant defined by the GNU Crypto Library.
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[Macro]TMCG_MAX_CARDS
Defines the maximum number of stackable cards. The default value is 1024.

[Macro]TMCG_MAX_PLAYERS
Defines the maximum number of players. The default value is 32. This parameter is only
relevant for the card encoding scheme of Schindelhauer.

[Macro]TMCG_MAX_TYPEBITS
Defines the maximum number of bits to represent the card type in the scheme of Schindel-
hauer. On the other hand, this value determines the maximum size of the message space in
the scheme of Barnett and Smart. The default value is 10 which implies that 1024 different
card types are possible. For each type some memory will be allocated, thus this value should
modified very carefully.

[Macro]TMCG_MPZ_IO_BASE
Defines the input and output base of the std::iostream operators << and >> which is used
to encode large integers (mpz_t). The former value was 36 which was some years ago the
largest base supported by the GNU Multiple Precision Arithmetic Library. Since version
1.2.0 of LibTMCG the new default value is 62.

[Macro]TMCG_PRAB_K0
Defines the security parameter k0 (in characters) of the PRab scheme [BR96]. The default
value is 20 which implies a security level around 280.

[Macro]TMCG_QRA_SIZE
Defines the security parameter (size of the modulus m = p · q in bit) of the TMCG key. The
underlying assumptions are QRA and FACTOR. The default value is 2048. This parameter
is only relevant for TMCG keys and Schindelhauer’s encoding scheme.

[Macro]TMCG_SAEP_S0
Defines the security parameter s0 (in characters) of the Rabin-SAEP scheme [Bo01]. The
default value is 20 which implies a security level around 280 against CCA (chosen-ciphertext
attack).

[Macro]TMCG_HASH_COMMITMENT
Defines whether shortened commitments are used in the shuffle verification procedure of
Schindelhauer [Sc98]. The default value is true, because this will decrease the communication
complexity significantly. However, as an immediate consequence the soundness property is
violated, if the hash function TMCG_GCRY_MD_ALGO is broken.

[Macro]TMCG_MAX_FPOWM_T
Defines the maximum size of admissible exponents (in bit) used by our fast exponentiation
procedures. The default value is 2048. Note that this parameter has a strong influence on the
amount of memory allocated by LibTMCG since it determines the size of the precomputed
tables. However, it should be at least greater or equal than TMCG_DDH_SIZE and TMCG_QRA_

SIZE in order to support the possible exponents of common finite field sizes.

[Macro]TMCG_MAX_FPOWM_N
Define the maximum number of different bases for doing the above precomputation. This
value is a trade-off between fast exponentiation for all possible bases and memory allocation.
Currently it is only relevant for the generators g1, . . . , gn in Groth’s variant of Pedersen
commitment scheme (see Section 2.2.3.4 [GrothVSSHE], page 34). The default value is 256.

[Macro]TMCG_MAX_SSRANDOMM_CACHE
Define the maximum size of the cache for function mpz_ssrandomm. The cache must be proper
initialized and is useful in interactive protocols, where entropy is limited and a lot of very

https://en.wikipedia.org/wiki/Chosen-ciphertext_attack
https://en.wikipedia.org/wiki/Chosen-ciphertext_attack
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secure randomness is required immediately. Thus some values should be aquired and cached
before the protocol starts. The default value is 256.

2.2 Basic Structures

This section describes all public data types, communication interfaces, and classes of high-level
protocols that are necessary to create a secure card game. Private methods and only internally
used members are not explained.

2.2.1 Data Types

LibTMCG provides several data structures for cards, stacks, and cryptographic keys.

2.2.1.1 Encoding Schemes for Cards

There exist two different encoding schemes that can be used for the digital representation of
playing cards. In the scheme of Schindelhauer [Sc98] the type of a card is shared among the
players through bit-wise representation by quadratic (non-)residues. Thus the security relies
on the well-known QRA (Quadratic Residuosity Assumption). Unfortunately, the size of a
card grows linearly in the number of players and logarithmically in the number of card types.
Recently the much more efficient solution of Barnett and Smart [BS03] has been implemented.
This encoding works on a cyclic group of prime order and requires that the DDH (Decisional
Diffie-Hellman Assumption) holds there.

For both schemes LibTMCG provides a structure whose name contains the suffix Card. This
data type is used to represent an open or even a masked card. Further, there is a corresponding
structure whose name contains the suffix CardSecret. This data type is used to represent the
secret values involved in a card masking operation.

Because of the reduced computational and communication complexity (see [St05] for more
details) the usage of the second card encoding scheme, i.e. VTMF_Card and VTMF_CardSecret,
is highly recommended.

[Data type]TMCG_Card
This struct represents a card in the encoding scheme of Schindelhauer [Sc98]. The type of
the card is shared among the players by quadratic residues and non-residues, respectively.
Thus the security relies on the Quadratic Residuosity Assumption.

[Member of TMCG_Card]std::vector< std::vector<MP_INT> > z
This k×w-matrix encodes the type of the corresponding card in a shared way. For each of
the k players there is a separate row and for each of the w bits in the binary representation
of the type there is a column. The elements are numbers from the group Z◦

mi
where mi is

the public modulus of the ith player.

[Constructor on TMCG_Card]TMCG_Card ()
This default constructor initializes the card with an empty 1×1-matrix. Later the method
TMCG_Card::resize can be used to enlarge the card representation.

[Constructor on TMCG_Card]TMCG_Card (size_t k, size_t w)
This constructor initializes the card with an empty k×w-matrix. The parameter k is the
number of players and w is the maximum number of bits used by the binary representation
of the card type.

[Constructor on TMCG_Card]TMCG_Card (const TMCG_Card& that)
This is a simple copy-constructor and that is the card to be copied.

[Operator on TMCG_Card]TMCG_Card& = (const TMCG_Card& that)
This is a simple assignment-operator and that is the card to be assigned.
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[Operator on TMCG_Card]bool == (const TMCG_Card& that)
This operator tests two card representations for equality.

[Operator on TMCG_Card]bool != (const TMCG_Card& that)
This operator tests two card representations for inequality.

[Method on TMCG_Card]void resize (size_t k, size_t w)
This method resizes the representation of the card. The current content of the member
z will be released and a new k × w-matrix is created. The parameter k is the number of
players and w is the maximum number of bits used by the binary representation of the
card type.

[Method on TMCG_Card]bool import (std::string s)
This method imports the content of the member z from the correctly formatted input
string s. It returns true, if the import was successful.

[Destructor on TMCG_Card]~TMCG_Card ()
This destructor releases all occupied resources.

[Operator on TMCG_Card]std::ostream& << (std::ostream& out, const
TMCG_Card& card)

This operator exports the content of the member z (of the given TMCG_Card card) to the
output stream out.

[Operator on TMCG_Card]std::istream& >> (std::istream& in, TMCG_Card& card)
This operator imports the content of the member z (of the given TMCG_Card card) from the
input stream in. The data has to be delimited by a newline character. The failbit of the
stream is set, if any parse error occurred.

[Data type]TMCG_CardSecret
This struct represents the secret used for a card masking operation in the original encoding
scheme of Schindelhauer [Sc98].

[Member of TMCG_CardSecret]std::vector< std::vector<MP_INT> > r
This k×w-matrix encodes the first part of the secret. For each of the k players there is a
separate row and for each of the w bits in the binary representation of the corresponding
card type there is a column. The elements are numbers from the group Z◦

mi
where mi is

the public modulus of the ith player.

[Member of TMCG_CardSecret]std::vector< std::vector<MP_INT> > b
This k×w-matrix encodes the second part of the secret. For each of the k players there is
a separate row and for each of the w bits in the binary representation of the corresponding
card type there is a column. The elements are simply numbers from {0, 1}.

[Constructor on TMCG_CardSecret]TMCG_CardSecret ()
This default constructor initializes both members with an empty 1× 1-matrix. Later the
method TMCG_CardSecret::resize can be used to enlarge the card representation.

[Constructor on TMCG_CardSecret]TMCG_CardSecret (size_t k, size_t w)
This constructor initializes both members with an empty k × w-matrix. The parameter
k is the number of players and w is the maximum number of bits used by the binary
representation of the corresponding card type.

[Constructor on TMCG_CardSecret]TMCG_CardSecret (const TMCG_CardSecret&
that)

This is a simple copy-constructor and that is the secret to be copied.
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[Operator on TMCG_CardSecret]TMCG_CardSecret& = (const TMCG_CardSecret&
that)

This is a simple assignment-operator and that is the secret to be assigned.

[Method on TMCG_CardSecret]void resize (size_t k, size_t w)
This method resizes the representation of the secret. The current content of the members r
and b will be released and new k×w-matrices are created. The parameter k is the number
of players and w is the maximum number of bits used by the binary representation of the
corresponding card type.

[Method on TMCG_CardSecret]bool import (std::string s)
This method imports the content of the members r and b from the correctly formatted
input string s. It returns true, if the import was successful.

[Destructor on TMCG_CardSecret]~TMCG_CardSecret ()
This destructor releases all occupied resources.

[Operator on TMCG_CardSecret]std::ostream& << (std::ostream& out, const
TMCG_CardSecret& cardsecret)

This operator exports the content of the members r and b (of the given TMCG_CardSecret

cardsecret) to the output stream out.

[Operator on TMCG_CardSecret]std::istream& >> (std::istream& in,
TMCG_CardSecret& cardsecret)

This operator imports the content of the members r and b (of the given TMCG_CardSecret

cardsecret) from the input stream in. The data has to be delimited by a newline character.
The failbit of the stream is set, if any parse error occurred.

[Data type]VTMF_Card
This struct represents a card in the encoding scheme of Barnett and Smart [BS03]. Here
we use the discrete logarithm based instantiation of their general cryptographic primitive
VTMF (Verifiable k-out-of-k Threshold Masking Function). The security relies on the DDH
assumption in the underlying abelian group G.

[Member of VTMF_Card]mpz_t c_1
This is the first part of the encrypted card type. It is an element from the underlying
group G.

[Member of VTMF_Card]mpz_t c_2
This is the second part of the encrypted card type. It is also an element from the underlying
group G.

[Constructor on VTMF_Card]VTMF_Card ()
This default constructor initializes an empty card where the members c_1 and c_2 are set
to zero.

[Constructor on VTMF_Card]VTMF_Card (const VTMF_Card& that)
This is a simple copy-constructor and that is the card to be copied.

[Operator on VTMF_Card]VTMF_Card& = (const VTMF_Card& that)
This is a simple assignment-operator and that is the card to be assigned.

[Operator on VTMF_Card]bool == (const VTMF_Card& that)
This operator tests two card representations for equality.

[Operator on VTMF_Card]bool != (const VTMF_Card& that)
This operator tests two card representations for inequality.
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[Method on VTMF_Card]bool import (std::string s)
This method imports the content of the members c_1 and c_2 from a correctly formatted
input string s. It returns true, if the import was successful.

[Destructor on VTMF_Card]~VTMF_Card ()
This destructor releases all occupied resources.

[Operator on VTMF_Card]std::ostream& << (std::ostream& out, const
VTMF_Card& card)

This operator exports the content of the members c_1 and c_2 (of the given VTMF_Card card)
to the output stream out.

[Operator on VTMF_Card]std::istream& >> (std::istream& in, VTMF_Card& card)
This operator imports the content of the members c_1 and c_2 (of the given VTMF_Card

card) from the input stream in. The data has to be delimited by a newline character. The
failbit of the stream is set, if any parse error occurred.

[Data type]VTMF_CardSecret
This struct represents the secrets used in the card masking operation by the encoding scheme
of Barnett and Smart [BS03].

[Member of VTMF_CardSecret]mpz_t r
This member is the exponent (randomizer) used in the masking operation. It should be
chosen uniformly and randomly from Zq where q is the order of the finite abelian group G
for which the DDH assumption holds.

According to the results of Koshiba and Kurosawa (see Short Exponent Diffie-Hellman
Problems, PKC 2004, LNCS 2947) the length of this exponent can be shorten to a more
efficient size (e.g. 160 bit), if the corresponding generator of G is adjusted as well. Under
the additional DLSE (Discrete Logarithm with Short Exponents) assumption the DDH
problem in G seems to be still hard. By such an optimization trick we gain a great per-
formance advantage for almost all modular exponentiations that are computed during the
masking operation, if the VTMF primitive was instantiated by the later explained class
BarnettSmartVTMF_dlog_GroupQR. Furthermore, the size of the card secret is substan-
tially reduced which results in an improved communication complexity.

[Constructor on VTMF_CardSecret]VTMF_CardSecret ()
This default constructor initializes the secret with an empty member r.

[Constructor on VTMF_CardSecret]VTMF_CardSecret (const VTMF_CardSecret&
that)

This is a simple copy-constructor and that is the secret to be copied.

[Operator on VTMF_CardSecret]VTMF_CardSecret& = (const VTMF_CardSecret&
that)

This is a simple assignment-operator and that is the secret to be assigned.

[Method on VTMF_CardSecret]bool import (std::string s)
This method imports the content of the member r from the correctly formatted input
string s. It returns true, if the import was successful.

[Destructor on VTMF_CardSecret]~VTMF_CardSecret ()
This destructor releases all occupied resources.

[Operator on VTMF_CardSecret]std::ostream& << (std::ostream& out, const
VTMF_CardSecret& cardsecret)

This operator exports the content of the member r (of the given VTMF_CardSecret cardsecret)
to the output stream out.
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[Operator on VTMF_CardSecret]std::istream& >> (std::istream& in,
VTMF_CardSecret& cardsecret)

This operator imports the content of the member r (of the given VTMF_CardSecret cardse-
cret) from the input stream in. The data has to be delimited by a newline character. The
failbit of the stream is set, if any parse error occurred.

2.2.1.2 Stacks

All of the following data types are generic containers that can be instantiated as C++ templates
with the former explained Card and CardSecret data types, respectively. Note the maximum
number of stackable data is upper-bounded by TMCG_MAX_CARDS. There is no error reported, if
this limit is exceeded.

[Data type]TMCG_Stack<CardType>
This struct is a simple container for cards of the specified CardType. Currently, the elements
can be either of type TMCG_Card or VTMF_Card depending on which kind of encoding scheme
is used. The TMCG_Stack structure is mainly used to represent a stack of masked cards, i.e.,
playing cards that are stacked in a face-down manner. It can be either a public stack where all
participants have access to or even a private stack, e.g. the players’ hand. If the corresponding
card types are known it can also serve as an “open stack”, although TMCG_OpenStack is more
suitable in that case.

[Member of TMCG_Stack]std::vector<CardType> stack
This is the container that is used internally for storing the cards.

[Constructor on TMCG_Stack]TMCG_Stack ()
This default constructor initializes an empty stack.

[Operator on TMCG_Stack]TMCG_Stack& = (const TMCG_Stack<CardType>& that)
This is a simple assignment-operator and that is the stack to be assigned.

[Operator on TMCG_Stack]bool == (const TMCG_Stack<CardType>& that)
This operator tests two stacks for equality. It checks whether the sizes of the stacks and
the contained cards are equal with respect to the implied order.

[Operator on TMCG_Stack]bool != (const TMCG_Stack<CardType>& that)
This operator tests two stacks for inequality. It returns true, if either the sizes do not
match or at least two corresponding cards are not equal.

[Operator on TMCG_Stack]const CardType& [] (const size_t n)
This operator provides read-only random access to the contained cards. It returns a
const-reference to the nth card from the top of the stack.

[Operator on TMCG_Stack]CardType& [] (const size_t n)
This operator provides random access to the contained cards. It returns a reference to the
nth card from the top of the stack.

[Method on TMCG_Stack]size_t size ()
This method returns the size of the stack.

[Method on TMCG_Stack]void push (const CardType& c)
This method pushes the card c to the back of the stack.

[Method on TMCG_Stack]void push (const TMCG_Stack<CardType>& s)
This method pushes the stack s to the back of the stack.
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[Method on TMCG_Stack]void push (const TMCG_OpenStack<CardType>& s)
This method pushes the cards of the open stack s to the back of the stack.

[Method on TMCG_Stack]bool empty ()
This method returns true, if the stack is empty.

[Method on TMCG_Stack]bool pop (CardType& c)
This method removes a card from the back and stores the data in c. It returns true, if
the stack was not empty and thus c contains useful data.

[Method on TMCG_Stack]void clear ()
This method clears the stack, i.e., it removes all cards.

[Method on TMCG_Stack]bool find (const CardType& c)
This method returns true, if the card c was found in the stack.

[Method on TMCG_Stack]bool remove (const CardType& c)
This method removes the top-most card from the stack which is equal to c. It returns
true, if the card was found and successfully removed.

[Method on TMCG_Stack]size_t removeAll (const CardType& c)
This method removes every card from the stack which is equal to c. It returns the number
of removed cards.

[Method on TMCG_Stack]bool import (std::string s)
This method imports the stack from the correctly formatted input string s. It returns
true, if the import was successful.

[Destructor on TMCG_Stack]~TMCG_Stack ()
This destructor releases all occupied resources.

[Operator on TMCG_Stack]std::ostream& << (std::ostream& out, const
TMCG_Stack<CardType>& stack)

This operator exports the given stack to the output stream out.

[Operator on TMCG_Stack]std::istream& >> (std::istream& in,
TMCG_Stack<CardType>& stack)

This operator imports the given stack from the input stream in. The data has to be delimited
by a newline character. The failbit of the stream is set, if any parse error occurred.

[Data type]TMCG_OpenStack<CardType>
This struct is a simple container for cards of the specified CardType whose types are known.
The elements are pairs where the first component is the type and the second component is
the corresponding card. The card type is represented by a size_t integer. Currently, the
cards can be either of type TMCG_Card or VTMF_Card depending on which kind of encoding
scheme is used.

[Member of TMCG_OpenStack]std::vector<std::pair<size_t, CardType> >
stack

This is the container that is used internally for storing the pairs.

[Constructor on TMCG_OpenStack]TMCG_OpenStack ()
This default constructor initializes an empty stack.

[Operator on TMCG_OpenStack]TMCG_OpenStack& = (const
TMCG_OpenStack<CardType>& that)

This is a simple assignment-operator and that is the stack to be assigned.
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[Operator on TMCG_OpenStack]bool == (const TMCG_OpenStack<CardType>&
that)

This operator tests two stacks for equality. It checks whether the types, the sizes, and the
contained cards are equal with respect to the stack order.

[Operator on TMCG_OpenStack]bool != (const TMCG_OpenStack<CardType>&
that)

This operator tests two stacks for inequality. It returns true, if either the sizes resp. types
do not match or at least two corresponding cards are not equal.

[Operator on TMCG_OpenStack]const std::pair<size_t, CardType>& []
(const size_t n)

This operator provides read-only random access to the contained pairs. It returns a const-
reference to the nth pair from the top of the stack.

[Operator on TMCG_OpenStack]std::pair<size_t, CardType>& [] (const
size_t n)

This operator provides random access to the contained pairs. It returns a reference to the
nth pair from the top of the stack.

[Method on TMCG_OpenStack]size_t size ()
This method returns the size of the stack.

[Method on TMCG_OpenStack]void push (const std::pair<size_t, CardType>&
p)

This method pushes the pair p to the back of the stack. The first component is the type
and the second component is the corresponding card representation.

[Method on TMCG_OpenStack]void push (const size_t type, const CardType& c)
This method pushes a pair to the back of the stack. The parameter type is the card type
and c is the corresponding card representation.

[Method on TMCG_OpenStack]void push (const TMCG_OpenStack<CardType>& s)
This method pushes the pairs of the stack s to the back of this stack.

[Method on TMCG_OpenStack]bool empty ()
This method returns true, if the stack is empty.

[Method on TMCG_OpenStack]bool pop (size_t& type, CardType& c)
This method removes a pair from the back of the stack. It stores the card type in type
and the representation in c. It returns true, if the stack was not empty and thus type
and c contain useful data.

[Method on TMCG_OpenStack]void clear ()
This method clears the stack, i.e., it removes all pairs.

[Method on TMCG_OpenStack]bool find (const size_t type)
This method returns true, if a pair with the first component type was found in the stack.

[Method on TMCG_OpenStack]bool remove (const size_t type)
This method removes the top-most pair with the first component type from the stack. It
returns true, if such a pair was found and successfully removed.

[Method on TMCG_OpenStack]size_t removeAll (const size_t type)
This method removes every pair from the stack whose first component is equal to type.
Further it returns the number of removed pairs.
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[Method on TMCG_OpenStack]bool move (const size_t type,
TMCG_Stack<CardType>& s)

This method moves the top-most card representation of the given type to another stack
s. It returns true, if such a pair was found and successfully moved.

[Destructor on TMCG_OpenStack]~TMCG_OpenStack ()
This destructor releases all occupied resources.

[Data type]TMCG_StackSecret<CardSecretType>
This struct is a simple container for the secrets involved in the masking operation of cards.
Additionally, the permutation of a corresponding shuffle of the stack is stored. The elements
are pairs where the first component is a permutation index of type size_t and the second
component is a card secret of the specified CardSecretType. Currently, such secrets can be
either of type TMCG_CardSecret or VTMF_CardSecret depending on which kind of encoding
scheme is used.

[Member of TMCG_StackSecret]std::vector<std::pair<size_t,
CardSecretType> > stack

This is the container that is used internally for storing the pairs.

[Constructor on TMCG_StackSecret]TMCG_StackSecret ()
This default constructor initializes an empty stack secret.

[Operator on TMCG_StackSecret]TMCG_StackSecret& = (const
TMCG_StackSecret<CardSecretType>& that)

This is a simple assignment-operator and that is the stack secret to be assigned.

[Operator on TMCG_StackSecret]const std::pair<size_t, CardSecretType>&
[] (const size_t n)

This operator provides read-only random access to the contained pairs. It returns a const-
reference to the nth pair from the top of the stack secret.

[Operator on TMCG_StackSecret]std::pair<size_t, CardSecretType>& []
(const size_t n)

This operator provides random access to the contained pairs. It returns a reference to the
nth pair from the top of the stack secret.

[Method on TMCG_StackSecret]size_t size ()
This method returns the size of the stack secret.

[Method on TMCG_StackSecret]void push (const size_t index, const
CardSecretType& cs)

This method pushes a pair to the back of the stack secret. The parameter index is the
permutation index and cs is the corresponding card secret.

[Method on TMCG_StackSecret]void clear ()
This method clears the stack secret, i.e., it removes all pairs.

[Method on TMCG_StackSecret]size_t find_position (const size_t index)
This method searches for a given permutation index in the stack secret. It returns the
corresponding position5 in the stack secret, if the index was found. Otherwise, the size of
the stack secret is returned. Please note that in this case the returned value is not a valid
position for an access to the stack secret.

5 According to the behavior of the []-operator, the zero denotes always the top-most position.
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[Method on TMCG_StackSecret]bool find (const size_t index)
This method searches for a given permutation index in the stack secret. It returns true,
if such an index was found.

[Method on TMCG_StackSecret]bool import (std::string s)
This method imports the stack secret from a correctly formatted input string s. It returns
true, if the import was successful.

[Destructor on TMCG_StackSecret]~TMCG_StackSecret ()
This destructor releases all occupied resources.

[Operator on TMCG_StackSecret]std::ostream& << (std::ostream& out, const
TMCG_StackSecret<CardSecretType>& stacksecret)

This operator exports the given stacksecret to the output stream out.

[Operator on TMCG_StackSecret]std::istream& >> (std::istream& in,
TMCG_StackSecret<CardSecretType>& stacksecret)

This operator imports the given stacksecret from the input stream in. The data has to
be delimited by a newline character. The failbit of the stream is set, if any parse error
occurred.

2.2.1.3 Cryptographic Keys

LibTMCG provides corresponding data types for keys used by the encoding scheme of Schindel-
hauer [Sc98], because in this scheme it is not efficient to perform the process of key generation for
every new game session. These keys are called TMCG keys. However, they also can be utilized
to encrypt and sign messages for the more general reasons of confidentiality and integrity, even
if the card encoding scheme of Schindelhauer is not used. Therefore these structures may be of
independent interest, for example to establish authenticated communication channels between
players. However, like for all public key cryptosystems a trusted PKI (Public Key Infrastructure)
is needed. This might not be a serious problem in distributed game environments, because the
players can include key fingerprints in their individual profile or a service provider can issue
public key certificates.

[Data type]TMCG_SecretKey
This struct represents the secret part of the key. The underlying public key cryptosystem
is due to Rabin (see Digitalized Signatures and Public-Key Functions as Intractable as Fac-
torization, MIT Technical Report 212, 1979) and Williams (see A modification of the RSA
public-key encryption procedure, IEEE Transactions on Information Theory, 26(6):726–729,
1980) with minor modifications for encryption padding (SAEP scheme of Boneh [Bo01]) and
digital signatures (PRab scheme of Bellare and Rogaway [BR96]).

[Member of TMCG_SecretKey]std::string name
This string contains the name or a pseudonym of the key owner.

[Member of TMCG_SecretKey]std::string email
This string contains the email address of the key owner.

[Member of TMCG_SecretKey]std::string type
This string contains information about the key type. The common prefix is TMCG/RABIN.
It is followed by the decimal encoded bit size of the modulus m. The suffix NIZK signals
that the correctness of the key is shown by an appended non-interactive zero-knowledge
proof. The single parts of the description are separated by underscore characters _, e.g.,
TMCG/RABIN_2048_NIZK has the correct form. The suffix can be left empty, if the key is
only used for encryption and signing (so-called non-NIZK key) without card encoding.
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[Member of TMCG_SecretKey]std::string nizk
This string contains two stages of the non-interactive zero-knowledge proof of Gennaro,
Micciancio, and Rabin [GMR98]. The proof shows that m was correctly generated as
product of at most two primes and both are congruent to 3 (modulo 4). Further there
is another non-interactive zero-knowledge proof appended which shows that the condition
y ∈ NQR◦

m holds.

[Member of TMCG_SecretKey]std::string sig
This string contains a self signature of the public key.

[Member of TMCG_SecretKey]mpz_t m
This is the public modulus m = p · q which is the product of two secret primes p and q.
The size of m is determined by the security parameter TMCG_QRA_SIZE.

[Member of TMCG_SecretKey]mpz_t y
This is the public quadratic non-residue y ∈ NQR◦

m which is used in several zero-knowledge
proofs of Schindelhauer’s encoding scheme [Sc98].

[Member of TMCG_SecretKey]mpz_t p
This is the secret prime number p which is a factor of the modulus m.

[Member of TMCG_SecretKey]mpz_t q
This is the secret prime number q which is a factor of the modulus m.

[Constructor on TMCG_SecretKey]TMCG_SecretKey ()
This default constructor initializes an empty secret key.

[Constructor on TMCG_SecretKey]TMCG_SecretKey (const std::string& n, const
std::string& e, const unsigned long int keysize =TMCG_QRA_SIZE,
const bool nizk key =true)

This constructor generates a new secret key, where n is the name or a pseudonym of the
owner, e is a corresponding email address, keysize is the desired bit length of the modulus
m, and nizk key indicates whether or not a NIZK proof will be appended. The default
value of the third argument is set to TMCG_QRA_SIZE, if keysize is omitted in the call. The
default value of the fourth argument is set to true, whenever it is omitted in the call.
Depending on keysize and nizk key the generation is a very time-consuming task that
should be taken into account by the application designer.

[Constructor on TMCG_SecretKey]TMCG_SecretKey (const std::string& s)
This constructor initializes the key from a correctly formatted input string s.

[Constructor on TMCG_SecretKey]TMCG_SecretKey (const TMCG_SecretKey& that)
This is a simple copy-constructor and that is the key to be copied.

[Operator on TMCG_SecretKey]TMCG_SecretKey& = (const TMCG_SecretKey&
that)

This is a simple assignment-operator and that is the key to be assigned.

[Method on TMCG_SecretKey]bool check ()
This method tests whether the self signature is valid and whether the non-interactive zero-
knowledge proofs are sound. It returns true, if all checks have been successfully passed.
Due to the computational complexity of the verification procedure these checks are a very
time-consuming task.
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[Method on TMCG_SecretKey]std::string fingerprint ()
This method returns the fingerprint of the key. The fingerprint is the hexadecimal notation
of the hash value (using algorithm TMCG_GCRY_MD_ALGO) on the concatenated members
name, email, type, m, y, nizk, and sig.

[Method on TMCG_SecretKey]std::string selfid ()
This method returns the real value of the self signature. The string ERROR is returned,
if any parse error occurred. The string SELFSIG-SELFSIG-SELFSIG-SELFSIG-SELFSIG-

SELFSIG is returned, if the self signature sig was empty.

[Method on TMCG_SecretKey]std::string keyid (const size_t size
=TMCG_KEYID_SIZE)

This method returns the unique key identifier of length size. The default value of the first
argument is set to TMCG_KEYID_SIZE, if size is omitted in the call.

[Method on TMCG_SecretKey]size_t keyid_size (const std::string& s)
This method returns the length of the unique key identifier s. Zero is returned, if any
parse error occurred.

[Method on TMCG_SecretKey]std::string sigid (std::string s)
This method returns the unique key identifier which is included in the signature s. The
string ERROR is returned, if any parse error occurred.

[Method on TMCG_SecretKey]bool import (std::string s)
This method imports the key from a correctly formatted input string s. It returns true,
if the import was successful.

[Method on TMCG_SecretKey]bool decrypt (unsigned char* value, std::string
s)

This method decrypts the given encryption packet s and stores the content in value which
is a pointer to a character array of size TMCG_SAEP_S0. The method returns true, if the
decryption was successful.

[Method on TMCG_SecretKey]std::string sign (const std::string& data)
This method returns a digital signature on data.

[Method on TMCG_SecretKey]std::string encrypt (const unsigned char*
value)

This method encrypts the content of value which is a pointer to a character array of
size TMCG_SAEP_S0. The method returns a corresponding encryption packet that can be
decrypted by the owner of the secret key.

[Method on TMCG_SecretKey]bool verify (const std::string& data,
std::string s)

This method verifies whether the signature s on data is valid or not. It returns true, if
everything was sound.

[Destructor on TMCG_SecretKey]~TMCG_SecretKey ()
This destructor releases all occupied resources.

[Operator on TMCG_SecretKey]std::ostream& << (std::ostream& out, const
TMCG_SecretKey& key)

This operator exports the given key to the output stream out.
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[Operator on TMCG_SecretKey]std::istream& >> (std::istream& in,
TMCG_SecretKey& key)

This operator imports the given key from the input stream in. The data has to be delimited
by a newline character. The failbit is set, if any parse error occurred.

[Data type]TMCG_PublicKey
This struct represents the public part of the TMCG key.

[Member of TMCG_PublicKey]std::string name
This string contains the name or a pseudonym of the key owner.

[Member of TMCG_PublicKey]std::string email
This string contains the email address of the key owner.

[Member of TMCG_PublicKey]std::string type
This string contains information about the key type. The common prefix is TMCG/RABIN. It
is followed by the decimal encoded bit size of the modulus m. The suffix NIZK signals that
the correctness of the key is shown by an appended non-interactive zero-knowledge proof.
The single parts of the string are separated by underscore characters _, e.g., TMCG/RABIN_
2048_NIZK has the correct form. However, the suffix can be left empty, if the key is only
used for encryption and signing.

[Member of TMCG_PublicKey]std::string nizk
This string contains two stages of non-interactive zero-knowledge proof of Gennaro, Mic-
ciancio and Rabin [GMR98]. This gives strong evidence that m was generated correctly.
Further there is another non-interactive zero-knowledge proof appended which shows that
the condition y ∈ NQR◦

m holds.

[Member of TMCG_PublicKey]std::string sig
This string contains the self signature of the public key.

[Member of TMCG_PublicKey]mpz_t m
This is the public modulus m = p · q which is the product of two secret primes p and q.
The size of m is determined by the security parameter TMCG_QRA_SIZE.

[Member of TMCG_PublicKey]mpz_t y
This is the public quadratic non-residue y ∈ NQR◦

m which is used by several zero-
knowledge proofs of the toolbox.

[Constructor on TMCG_PublicKey]TMCG_PublicKey ()
This default constructor initializes an empty public key.

[Constructor on TMCG_PublicKey]TMCG_PublicKey (const TMCG_SecretKey& skey)
This constructor initializes the key using public values of the secret key skey.

[Constructor on TMCG_PublicKey]TMCG_PublicKey (const TMCG_PublicKey& pkey)
This is a simple copy-constructor and pkey is the key to be copied.

[Operator on TMCG_PublicKey]TMCG_PublicKey& = (const TMCG_PublicKey&
that)

This is a simple assignment-operator and that is the key to be assigned.

[Method on TMCG_PublicKey]bool check ()
This method tests whether the self signature is valid and whether the non-interactive zero-
knowledge proofs are sound. It returns true, if all checks have been successfully passed.
Due to the computational complexity of the verification procedure these checks are an
extremely time-consuming task.
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[Method on TMCG_PublicKey]std::string fingerprint ()
This method returns the fingerprint of the key. The fingerprint is the hexadecimal notation
of the hash value (using algorithm TMCG_GCRY_MD_ALGO) on the concatenated members
name, email, type, m, y, nizk, and sig.

[Method on TMCG_PublicKey]std::string selfid ()
This method returns the real value of the self signature. The string ERROR is returned,
if any parse error occurred. The string SELFSIG-SELFSIG-SELFSIG-SELFSIG-SELFSIG-

SELFSIG is returned, if the self signature sig was empty.

[Method on TMCG_PublicKey]std::string keyid (const size_t size
=TMCG_KEYID_SIZE)

This method returns the unique key identifier of length size. The default value of the first
argument is set to TMCG_KEYID_SIZE, if size is omitted in the call.

[Method on TMCG_PublicKey]size_t keyid_size (const std::string& s)
This method returns the length of the unique key identifier s. Zero is returned, if any
parse error occurred.

[Method on TMCG_PublicKey]std::string sigid (std::string s)
This method returns the unique key identifier which is included in the signature s. The
string ERROR is returned, if any parse error occurred.

[Method on TMCG_PublicKey]bool import (std::string s)
This method imports the key from a correctly formatted input string s. It returns true,
if the import was successful.

[Method on TMCG_PublicKey]std::string encrypt (const unsigned char*
value)

This method encrypts the content of value which is a pointer to a character array of
size TMCG_SAEP_S0. The method returns a corresponding encryption packet that can be
decrypted by the owner of the secret key.

[Method on TMCG_PublicKey]bool verify (const std::string& data,
std::string s)

This method verifies whether the signature s on data is valid or not. It returns true, if
everything was sound.

[Destructor on TMCG_PublicKey]~TMCG_PublicKey ()
This destructor releases all occupied resources.

[Operator on TMCG_PublicKey]std::ostream& << (std::ostream& out, const
TMCG_PublicKey& key)

This operator exports the given key to the output stream out.

[Operator on TMCG_PublicKey]std::istream& >> (std::istream& in,
TMCG_PublicKey& key)

This operator imports the given key from the input stream in. The data has to be delimited
by a newline character. The failbit is set, if any parse error occurred.

[Data type]TMCG_PublicKeyRing
This struct is just a simple container for TMCG public keys. There are no particular
methods provided by TMCG_PublicKeyRing. You have to use the regular interface of the STL
container std::vector to access the single keys of the ring.

[Member of TMCG_PublicKeyRing]std::vector<TMCG_PublicKey> keys
This is the real container that is used to store the keys.
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[Constructor on TMCG_PublicKeyRing]TMCG_PublicKeyRing ()
This default constructor initializes an empty public key ring.

[Constructor on TMCG_PublicKeyRing]TMCG_PublicKeyRing (size_t n)
This constructor initializes the container for storing exactly n keys.

[Destructor on TMCG_PublicKeyRing]~TMCG_PublicKeyRing ()
This destructor releases all occupied resources.

2.2.2 Communication Interfaces

The base class aiounicast and the corresponding derived classes aiounicast_nonblock and
aiounicast_select provide a simple communication interface for asynchronous point-to-point
communication channels. They can be used to transfer data of type mpz_t (big integers, see
libgmp for explanation of this data type) between up to n parties, that are connected by sockets,
pipes or any other file descriptor based input/output mechanism.

Moreover, the channels can be authenticated by a message authentication code and encrypted
by a symmetric cipher. The deployed algorithms are defined by global symbols (TMCG_GCRY_
MAC_ALGO and TMCG_GCRY_ENC_ALGO, respectively) and fixed at compile time of LibTMCG.

[Class]aiounicast
This class is only an abstract interface and cannot be instantiated directly. We explain some
basic class members that are useful for an application programmer.

[Member of aiounicast]static const time_t aio_timeout_very_short
This constant defines a very short time interval of only one second.

[Member of aiounicast]static const time_t aio_timeout_short
This constant defines a short time interval of 15 seconds.

[Member of aiounicast]static const time_t aio_timeout_middle
This constant defines a middle time interval of 30 seconds.

[Member of aiounicast]static const time_t aio_timeout_long
This constant defines a long time interval of 90 seconds.

[Member of aiounicast]static const time_t aio_timeout_very_long
This constant defines a very long time interval of 180 seconds.

[Member of aiounicast]static const time_t aio_timeout_extremly_long
This constant defines an extremly long time interval of 300 seconds.

[Member of aiounicast]static const size_t aio_scheduler_roundrobin
This constant represents the round-robin scheduler for message processing.

[Member of aiounicast]static const size_t aio_scheduler_random
This constant represents the random select scheduler for message processing.

[Member of aiounicast]static const size_t aio_scheduler_direct
This constant represents the constant select scheduler for message processing.

[Member of aiounicast]const size_t n
This is the total number of parties n involved in the communication.

[Member of aiounicast]const size_t j
This is an uniqe index of the party running this instance.
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[Member of aiounicast]std::map<size_t, int> fd_in
The input file descriptors of point-to-point links to all parties.

[Member of aiounicast]std::map<size_t, int> fd_out
The ouput file descriptors of point-to-point links to all parties.

[Member of aiounicast]size_t numWrite
The total number of bytes written to point-to-point links.

[Member of aiounicast]size_t numRead
The total number of bytes read from point-to-point links.

[Member of aiounicast]size_t numEncrypted
The total number of bytes that have been encrypted yet.

[Member of aiounicast]size_t numDecrypted
The total number of bytes that have been decrypted yet.

[Member of aiounicast]size_t numAuthenticated
The total number of bytes that have been authenticated yet.

Note that the header files aiounicast_nonblock.hh or aiounicast_select.hh must be
included in addition to libTMCG.hh. The use of class aiounicast_select is strongly recom-
mended.

[Class]aiounicast_nonblock
This class works with non-blocking file descriptors, i.e., the pipes or sockets have to be opened
with the O_NONBLOCK flag. The methods use continiuous polling on the descriptors to achieve
asynchronous I/O that results in exorbitant CPU load. The class should be used only, if no
select system call is available or appropriate for the application.

[Constructor on aiounicast_nonblock]aiounicast_nonblock (const size_t
n in, const size_t j in, const std::vector<int>& fd in in, const
std::vector<int>& fd out in, const std::vector<std::string>&
key in, const size_t aio default scheduler in
=aio_scheduler_roundrobin, const time_t aio default timeout in
=aio_timeout_long, const bool aio is authenticated in =true, const
bool aio is encrypted in =true)

The constructor initializes internal queues and data structures for asynchronous point-to-
point channels connecting n parties (i.e. n in). The index of the calling party within this
set is given by j in. It is followed by a vector fd in in of exactly n input file descriptors
that are ready for reading and writing, and by a vector fd out in of exactly n output file
descriptors. Finally, the vector key in with exactly n passphrases6 or pre-shared keys is
neccesary, if aio is authenticated in or aio is encrypted in is set true, which is the default
behaviour. The default values for timeout (in seconds) and the receive scheduler can be
modified carefully according to the desired usage scenario.

[Method on aiounicast_nonblock]bool Send (mpz_srcptr m, const size_t i in,
time_t timeout =aio_timeout_default)

This method sends an integer m over the corresponding point-to-point link to the party
with index i in. In presence of the third argument this transmission is tried for at most
timeout seconds. Otherwise, the default timeout given to the constructor is applied.

The method returns false, if sending fails, and error messages are written to std::cerr.

6 The key derivation function PBKDF2 is applied with an iteration count of 25.000 and a different constant
salt to derive the authentication and the encryption key, respectively.
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[Method on aiounicast_nonblock]bool Send (const
std::vector<mpz_srcptr>& m, const size_t i in, time_t timeout
=aio_timeout_default)

This method works as above, however, a vector m of integers is sent.

[Method on aiounicast_nonblock]bool Receive (mpz_ptr m, size_t& i out,
size_t scheduler =aio_scheduler_default, time_t timeout
=aio_timeout_default)

This method receives an integer m over the point-to-point links from any party. The index
of the sender is returned in i out. In presence of the third argument it waits for at most
timeout seconds. Otherwise, the default timeout given to the constructor is applied.

The method returns false, if receiving fails. Only in critical cases some error messages
are written to std::cerr.

[Method on aiounicast_nonblock]bool Receive (std::vector<mpz_ptr>& m,
size_t& i out, size_t scheduler =aio_scheduler_default, time_t
timeout =aio_timeout_default)

This method works as above, however, a vector m of integers is received.

[Destructor on aiounicast_nonblock]~aiounicast_nonblock ()
This destructor releases all occupied resources.

[Class]aiounicast_select
This class works with arbitrary file descriptors. It uses the select interface of the operation
system with negligible timeout of 1000us to achieve asynchronous I/O. This results in a
reasonable CPU load in comparison with aiounicast_nonblock.

[Constructor on aiounicast_select]aiounicast_select (const size_t n in,
const size_t j in, const std::vector<int>& fd in in, const
std::vector<int>& fd out in, const std::vector<std::string>&
key in, const size_t aio default scheduler in
=aio_scheduler_roundrobin, const time_t aio default timeout in
=aio_timeout_long, const bool aio is authenticated in =true, const
bool aio is encrypted in =true)

The constructor initializes internal queues and data structures for asynchronous point-to-
point channels connecting n parties (i.e. n in). The index of the calling party within this
set is given by j in. It is followed by a vector fd in in of exactly n input file descriptors
that are ready for reading and writing, and by a vector fd out in of exactly n output file
descriptors. Finally, the vector key in with exactly n passphrases7 or pre-shared keys is
neccesary, if aio is authenticated in or aio is encrypted in is set true, which is the default
behaviour. The default values for timeout (in seconds) and the receive scheduler can be
modified carefully according to the desired usage scenario.

[Method on aiounicast_select]bool Send (mpz_srcptr m, const size_t i in,
time_t timeout =aio_timeout_default)

This method sends an integer m over the corresponding point-to-point link to the party
with index i in. In presence of the third argument this transmission is tried for at most
timeout seconds. Otherwise, the default timeout given to the constructor is applied.

The method returns false, if sending fails, and error messages are written to std::cerr.

7 The key derivation function PBKDF2 is applied with an iteration count of 25.000 and a different constant
salt to derive the authentication and the encryption key, respectively.
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[Method on aiounicast_select]bool Send (const std::vector<mpz_srcptr>&
m, const size_t i in, time_t timeout =aio_timeout_default)

This method works as above, however, a vector m of integers is sent.

[Method on aiounicast_select]bool Receive (mpz_ptr m, size_t& i out,
size_t scheduler =aio_scheduler_default, time_t timeout
=aio_timeout_default)

This method receives an integer m over the point-to-point links from any party. The index
of the sender is returned in i out. In presence of the third argument it waits for at most
timeout seconds. Otherwise, the default timeout given to the constructor is applied.

The method returns false, if receiving fails. Only in critical cases some error messages
are written to std::cerr.

[Method on aiounicast_select]bool Receive (std::vector<mpz_ptr>& m,
size_t& i out, size_t scheduler =aio_scheduler_default, time_t
timeout =aio_timeout_default)

This method works as above, however, a vector m of integers is received.

[Destructor on aiounicast_select]~aiounicast_select ()
This destructor releases all occupied resources.

2.2.3 Classes

LibTMCG consists of several C++ classes. Some of them are only extensions or optimizations,
but other provide necessary interfaces to perform the basic operations in secure card games, e.g.,
the creation of open cards, the masking of cards, the opening of masked cards, the verifiable
secret shuffle of a stack, and more general tasks like distributed key generation procedures. Each
class implements the some functionality of the corresponding research paper [CKPS01, BS03,
JL00, Gr05, HSSV09, Sc98]. The author names are a prefix of the class name and the following
part is an abbreviation of (a part of) the title, respectively.

2.2.3.1 Secure and Efficient Asynchronous Broadcast Protocols

This part of LibTMCG provides an implementation of reliable broadcast, which is actually based
on an optimized variant of Bracha’s double-echo broadcast protocol. It works without further
authentication mechanisms (e.g. digital signatures) and thus guarantees the desired properties
(i.e. validity, consistency, and totality8) of reliable broadcast only, if the number of faulty or even
malicious players t is strictly less than one third of all parties n, i.e. t < n/3. Please note that
without further assumptions this condition is rather optimal for asynchronous communication
and thus has crucial impact for liveness of the high-level protocols using it.

We describe only those classes, methods, and members that might be of interest for an
application programmer.

[Class]CachinKursawePetzoldShoupRBC
This class implements the protocol RBC by Cachin, Kursawe, Petzold, and Shoup [CKPS01]
for a reliable broadcast in the asynchronous communication model, where t < n/3 holds.
Additionally, a FIFO-ordered delivery mechanism based on sequence numbers has been im-
plemented.

[Member of CachinKursawePetzoldShoupRBC]size_t n
This is the total number of parties n involved in this protocol.

8 Totality ensures that all correct parties either deliver a message or don’t. In the literature consistency and
totality properties are often combined into a single condition called agreement.
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[Member of CachinKursawePetzoldShoupRBC]size_t t
This is the number of possible faulty parties t.

[Member of CachinKursawePetzoldShoupRBC]size_t j
This is an uniqe index of the party running this instance.

[Constructor on CachinKursawePetzoldShoupRBC]CachinKursawePetzoldShoupRBC
(const size_t n in, const size_t t in, const size_t j in, aiounicast*
aiou in, const size_t aio default scheduler in
=aiounicast::aio_scheduler_roundrobin, const time_t
aio default timeout in =aiounicast::aio_timeout_very_long)

The constructor initializes an instance for a reliable broadcast channel of n parties. This
total number of parties is given in the first argument n in. The number of possible faulty
or even malicious parties t (given in the second argument t in) must not exceed n/3.
Otherwise a warning is printed to std::cerr and the liveness of the protocol RBC is not
guaranteed. Thus, it is recommended to set t in to the asynchronous maximum (n−1)/3.
The third argument j in is an index of the party running this instance. Finally, the
constructor needs as fourth argument aiou in a reference to already established point-
to-point channels (see Section 2.2.2 [Communication Interfaces], page 24), which should
exclusively9 used for this broadcast channels. The default values for timeout (in seconds)
and the deliver scheduler can be modified carefully with respect to the usage scenario.

[Method on CachinKursawePetzoldShoupRBC]void setID (const std::string
ID in)

Broadcast channels are parameterized by a tag called ID, that is contained in every mes-
sage. This method sets the tag to ID in, which should be equal for all parties for the
desired channel.

[Method on CachinKursawePetzoldShoupRBC]void unsetID ()
This method unset the current channel tag and returns to the previous value. This is
commonly used to return from a channel of a subprotcol to the channel of the calling
protocol.

[Method on CachinKursawePetzoldShoupRBC]void Broadcast (mpz_srcptr m,
const bool simulate faulty behaviour =false)

This method broadcasts the integer m to all parties.

[Method on CachinKursawePetzoldShoupRBC]bool Deliver (mpz_ptr m, size_t&
i out, size_t scheduler =aiounicast::aio_scheduler_default, time_t
timeout =aiounicast::aio_timeout_default)

This method delivers a broadcasted integer m from any party using deliver scheduler
scheduler. The index of the sender is returned in i out. In presence of the fourth argu-
ment it waits for at most timeout seconds. Otherwise, the default timeout given to the
constructor is applied.

The method returns false, if delivering fails. Only in some critical cases error messages
are written to std::cerr.

[Method on CachinKursawePetzoldShoupRBC]bool DeliverFrom (mpz_ptr m,
const size_t i in, size_t scheduler
=aiounicast::aio_scheduler_default, time_t timeout
=aiounicast::aio_timeout_default)

This method delivers a broadcasted integer m from a specified party with index i in using
deliver scheduler scheduler. In presence of the fourth argument it waits at most for timeout
seconds. Otherwise, the default timeout given to the constructor is applied.

9 These channels should be authenticated such that network attacks or errors can be detetcted.
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The method returns false, if delivering fails. Only in some critical cases error messages
are written to std::cerr.

[Method on CachinKursawePetzoldShoupRBC]bool Sync (time_t timeout
=aiounicast::aio_timeout_default, const std::string tag ="")

This method continues the execution of RBC protocol such that the requests of other
waiting parties are satisfied. In presence of the first argument it waits approximately for
(t+1)· timeout seconds while trying to synchronize all parties based on their corresponding
local Unix Epoch time. Otherwise, the default timeout given to the constructor is applied.
Each synchronization point is required to be unique. Thus, a string called tag with
a description of the synchronization point can be supplied as second argument of this
method.

The method returns false, if synchronization is failed.

[Destructor on CachinKursawePetzoldShoupRBC]~CachinKursawePetzoldShoupRBC
()

This destructor releases all occupied resources.

2.2.3.2 Verifiable k-out-of-k Threshold Masking Function

The two classes of this subsection are concrete instantiations of Barnett and Smart’s VTMF
primitive [BS03]. More formally, the authors specify four different protocols:

• Key Generation Protocol

• Verifiable Masking Protocol

• Verifiable Re-masking Protocol

• Verifiable Decryption Protocol

Each protocol uses low-level operations on an appropriately chosen algebraic group G. The
choice of this group is crucial to the security of the card encoding scheme and thus also to the
security of high-level operations on cards resp. stacks.

There are just a few methods and members of these classes that might be of general interest
for an application programmer, e.g. the methods of the key generation protocol. The other stuff
is only used internally by high-level operations of SchindelhauerTMCG. Therefore this manual
omits the description of such internal functions and members.

[Class]BarnettSmartVTMF_dlog
This class implements the discrete logarithm instantiation of the VTMF primitive in the
field Z/pZ, where p is a large prime number. The mathematical computations are performed
in the finite cyclic subgroup G of prime order q such that p = kq + 1 holds for some k ∈
Z. The security relies on the DDH assumption in G, i.e., the distribution {ga, gb, gab} is
computationally indistinguishable from {ga, gb, gc}, where g is a generator of G and a, b, c are
chosen at random from Zq. Currently, this well-established assumption is believed to hold, if
p and q are chosen according to the predefined security parameters of LibTMCG.

[Member of BarnettSmartVTMF_dlog]mpz_t p
This is the public prime number p which defines the underlying finite field Z/pZ.

[Member of BarnettSmartVTMF_dlog]mpz_t q
This is the public prime number q which defines the underlying cyclic group G. G is a
subgroup of Z/pZ and is exactly of order q.

[Member of BarnettSmartVTMF_dlog]mpz_t g
This is the fixed public generator g of the underlying group G.
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[Member of BarnettSmartVTMF_dlog]mpz_t k
This is a public integer k such that p = kq + 1 holds.

[Member of BarnettSmartVTMF_dlog]mpz_t h
This is the common public key h =

∏k
i=1 hi which contains the public keys hi of each

player Pi. Note that in the above formula k denotes the number of players.

[Member of BarnettSmartVTMF_dlog]mpz_t h_i
This is the public key hi of this player instance.

[Constructor on BarnettSmartVTMF_dlog]BarnettSmartVTMF_dlog (const
unsigned long int fieldsize =TMCG_DDH_SIZE, const unsigned long int
subgroupsize =TMCG_DLSE_SIZE, const bool canonical g usage =false,
const bool initialize group =true)

This constructor creates a new VTMF instance. That means, the primes p and q are
randomly and uniformly chosen such that they have length fieldsize bit and subgroupsize
bit, respectively. Further, either a generator g for the unique subgroup of order q is chosen
at random or, if canonical g usage is set true, the generator g is chosen in a verifiable
way (cf. FIPS 186-3 A.2.3). If the arguments are omitted, then fieldsize, subgroupsize and
canonical g usage are set to their default values TMCG_DDH_SIZE, TMCG_DLSE_SIZE, and
false, respectively. The argument initialize group should be always set true. Depending
on fieldsize and subgroupsize the group generation is a very time-consuming task that
should be taken into account by the application designer.

[Constructor on BarnettSmartVTMF_dlog]BarnettSmartVTMF_dlog
(std::istream& in, const unsigned long int fieldsize =TMCG_DDH_SIZE,
const unsigned long int subgroupsize =TMCG_DLSE_SIZE, bool
canonical g usage =false, const bool precompute =true)

This constructor initializes the VTMF instance from a correctly formatted input stream
in. For example, such a stream can be generated by calling the method PublishGroup of
an already created instance. The arguments fieldsize, subgroupsize, and canonical g usage
are stored for later following usage, e.g. by the method CheckGroup as explained below.
The argument precompute should be always set true. If these arguments are omitted,
then they are set to the default values TMCG_DDH_SIZE, TMCG_DLSE_SIZE, false, and true

respectively.

[Method on BarnettSmartVTMF_dlog]bool CheckGroup ()
This method checks whether p and q have appropriate sizes with respect to the bit lengths
given during the initialization of the corresponding instance. Further, it checks whether p
has the correct form (i.e. p = kq + 1), whether p and q are probable prime, and whether
g is a generator of the subgroup G. If canonical g usage is set true during the call of
constructor, then it additionally checks whether g was generated in a verifiable way (cf.
FIPS 186-3 A.2.3). It returns true, if all of these checks have been passed successfully.

[Method on BarnettSmartVTMF_dlog]void PublishGroup (std::ostream& out)
This method exports all necessary group parameters of G to the given output stream out,
so other VTMF instances of G can be initialized, e.g. with the second constructor of
BarnettSmartVTMF_dlog.

[Method on BarnettSmartVTMF_dlog]void KeyGenerationProtocol_GenerateKey
()

This method generates a VTMF key pair and stores the numbers internally for a later
following usage. It must be called before any other part of the key generation protocol is
executed. Otherwise, the produced results are wrong.
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[Method on BarnettSmartVTMF_dlog]void KeyGenerationProtocol_PublishKey
(std::ostream& out)

This method exports the public part hi of the generated VTMF key pair to the given
output stream out. Further, it appends a non-interactive zero-knowledge proof of knowl-
edge (NIZK) which shows that the instance knows the secret part xi such that hi ≡ gxi

(mod p) holds. Due to the non-interactive nature of this proof the method has to be called
only once while the computed output can be reused multiple times if necessary.

[Method on BarnettSmartVTMF_dlog]bool KeyGenerationProtocol_UpdateKey
(std::istream& in)

This method reads the public part of a VTMF key and the NIZK from the input stream
in. It appends the key to the common public key and returns true, if the given proof was
sound. Otherwise, false is returned.

[Method on BarnettSmartVTMF_dlog]bool KeyGenerationProtocol_RemoveKey
(std::istream& in)

This method reads the public part of a VTMF key and the corresponding NIZK from the
input stream in. It removes the key from the common public key and returns true, if the
key was previously appended by KeyGenerationProtocol_UpdateKey as explained above.

[Method on BarnettSmartVTMF_dlog]void KeyGenerationProtocol_Finalize ()
This method must be called after any update (KeyGenerationProtocol_UpdateKey) or
removal (KeyGenerationProtocol_RemoveKey) has been performed on the common public
key.

[Destructor on BarnettSmartVTMF_dlog]~BarnettSmartVTMF_dlog ()
This destructor releases all occupied resources.

[Subclass of BarnettSmartVTMF_dlog]BarnettSmartVTMF_dlog_GroupQR
This subclass implements the discrete logarithm instantiation of the VTMF primitive in the
field Z/pZ, where p is a large prime number. The mathematical computations are performed
in a special finite cyclic subgroup G (quadratic residues modulo p) of prime order q, where
p = 2q + 1 holds. The security also relies on the DDH assumption w.r.t. G, i.e., the
distribution {ga, gb, gab} is computationally indistinguishable from {ga, gb, gc}, where g is a
generator of G and a, b, c are chosen at random from Zq. Currently, this well-established
assumption is believed to hold, if p and q are chosen according to the predefined security
parameters of LibTMCG.

[Member of BarnettSmartVTMF_dlog]mpz_t p
This is the public prime number p which defines the underlying finite field Z/pZ.

[Member of BarnettSmartVTMF_dlog]mpz_t q
This is the public prime number q which defines the underlying cyclic group G. G denotes
the unique subgroup of quadratic residues modulo p which is exactly of order q, if p = 2q+1
holds.

[Member of BarnettSmartVTMF_dlog]mpz_t g
This is the fixed public generator g of the underlying group G.

[Member of BarnettSmartVTMF_dlog]mpz_t k
This integer is fixed here by k = 2.

[Member of BarnettSmartVTMF_dlog]mpz_t h
This is the common public key h =

∏k
i=1 hi which contains the public keys hi of each

player Pi. Note that in the above formula k denotes the number of players.
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[Member of BarnettSmartVTMF_dlog]mpz_t h_i
This is the public key hi of this player instance.

[Constructor on BarnettSmartVTMF_dlog_GroupQR]BarnettSmartVTMF_dlog_GroupQR
(const unsigned long int fieldsize =TMCG_DDH_SIZE, const unsigned
long int exponentsize =TMCG_DLSE_SIZE)

This constructor creates a new VTMF instance. That means, the safe prime p is randomly
and uniformly chosen such that it has a length of fieldsize bit. Further, the generator g is
initially set up by 2 and then shifted by fieldsize − exponentsize bit positions, according
to the procedure described by Koshiba and Kurosawa (see Short Exponent Diffie-Hellman
Problems, PKC 2004, LNCS 2947). If the arguments of the constructor are omitted, then
fieldsize and exponentsize are set to their default values TMCG_DDH_SIZE and TMCG_DLSE_

SIZE, respectively. Depending on fieldsize and exponentsize the group generation is a very
time-consuming task that should be taken into account by the application designer.

[Constructor on BarnettSmartVTMF_dlog_GroupQR]BarnettSmartVTMF_dlog_GroupQR
(std::istream& in, const unsigned long int fieldsize =TMCG_DDH_SIZE,
const unsigned long int exponentsize =TMCG_DLSE_SIZE)

This constructor initializes the VTMF instance from a correctly formatted input stream
in. For example, such a stream can be generated by calling the method PublishGroup of
an already created instance. The arguments fieldsize and exponentsize are stored for later
following usage, e.g. by the method CheckGroup as explained below. If these arguments
are omitted, then they are set to the default values TMCG_DDH_SIZE and TMCG_DLSE_SIZE,
respectively.

[Method on BarnettSmartVTMF_dlog_GroupQR]bool CheckGroup ()
This method checks whether p and q have appropriate sizes with respect to the bit lengths
given during the initialization of the corresponding instance. Further, it checks whether p
has the correct form (i.e. p = 2q+1), whether p and q are probable prime, and whether g
is a generator of the subgroup G. It returns true, if all of these checks have been passed
successfully.

[Destructor on BarnettSmartVTMF_dlog_GroupQR]~BarnettSmartVTMF_dlog_GroupQR
()

This destructor releases all occupied resources.

2.2.3.3 Adaptively Secure Threshold Cryptography

Jarecki and Lysyanskaya [JL00] have introduced some useful building blocks in order to gain
security against an adaptive adversary for threshold cryptography.

[Class]JareckiLysyanskayaEDCF
This class provides the erasure-free distributed coinflip (EDCF) protocol. It also needs a
group Gq of prime order q where the discrete logarithm problem is computationally hard.
The protocol produces a public value a =

∑n
i=1 ai mod q such that 0 ≤ a < q is random and

uniformly distributed, if at least one party Pi, 1 ≤ i ≤ n has chosen their corresponding coin
share ai ∈ Zq uniformly at random.

The coinflip protocol is useful in order to transform a public-coin honest-verifier zero-
knowledge proof of knowledge (HVZKP) into interactive proof resp. argument which preserve
the zero-knowledge property even in case of malicious verifiers. Such proof systems are called
simultaneous zero-knowledge proofs of knowledge. The underlying general model of Jarecki
and Lysyanskaya [JL00] considers a synchronous communication network of n players with
access to a reliable broadcast channel, where an adaptive adversary can corrupt up to a
minority t < n/2 of the players.
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[Member of JareckiLysyanskayaEDCF]mpz_t p
This is the public prime number p which defines the underlying finite field Z/pZ.

[Member of JareckiLysyanskayaEDCF]mpz_t q
This is the public prime number q which defines the underlying cyclic group Gq. Note
that Gq is a subgroup of Z/pZ and it must be chosen to have order q.

[Member of JareckiLysyanskayaEDCF]mpz_t g
This is the fixed public generator g of the underlying group Gq.

[Member of JareckiLysyanskayaEDCF]mpz_t h
This is the common public value h ∈ Gq such that nobody knows logg h. It can be obtained
by the above key generation protocol (see Section 2.2.3.2 [BarnettSmartVTMF], page 29).

Jarecki and Lysyanskaya [JL00]: “When secure channels are present, h can
be obtained by using general techniques of multi-party computation [BGW88,
CDD+99]. When secure channel are not there, and implementing them by
erasure is not an option, we can use another protocol, where each player
generates his share hi of h, and then all players, in parallel, prove knowledge
of logg hi to each other.”

[Member of JareckiLysyanskayaEDCF]size_t n
This is the total number of parties n involved in this protocol.

[Member of JareckiLysyanskayaEDCF]size_t t
This is the maximum number of faulty parties t (reconstruction threshold).

[Constructor on JareckiLysyanskayaEDCF]JareckiLysyanskayaEDCF (const
size_t n in, const size_t t in, mpz_srcptr p CRS, mpz_srcptr q CRS,
mpz_srcptr g CRS, mpz_srcptr h CRS, const unsigned long int
fieldsize =TMCG_DDH_SIZE, const unsigned long int subgroupsize
=TMCG_DLSE_SIZE)

This constructor creates a new EDCF instance. That means, the required primes p and
q and the generators g and h are initialized from the given arguments p CRS, q CRS,
g CRS, and h CRS, respectively. n in is the total number of participating players, for
which at most t in are faulty or act malicious during the protocol execution.

[Method on JareckiLysyanskayaEDCF]bool CheckGroup ()
This method checks whether p and q have appropriate sizes with respect to the bit lengths
given during the initialization of the corresponding instance. Further, it checks whether p
has the correct form (i.e. p = kq+1), whether p and q are probable prime, and whether g
resp. h are different generators of the subgroup Gq. It returns true, if all of these checks
have been passed successfully.

[Method on JareckiLysyanskayaEDCF]bool Flip (const size_t i, mpz_ptr a,
aiounicast* aiou, CachinKursawePetzoldShoupRBC* rbc,
std::ostream& err, const bool simulate faulty behaviour =false)

This method starts the protocol which produces a public value a =
∑n
i=1 ai mod q such

that 0 ≤ a < q is random and uniformly distributed, if at least one party Pi, 1 ≤ i ≤ n has
chosen their corresponding share ai ∈ Zq uniformly at random. If it returns true, then a
contains this common random value. The argument i is an index of the running instance
with respect to already initialized instances of asynchronous point-to-point channels aiou
and a reliable broadcast channel rbc. Logging and debug messages are printed to the
provided output stream err.
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[Method on JareckiLysyanskayaEDCF]bool Flip_twoparty (const size_t i,
mpz_ptr a, std::istream& in, std::ostream& out, std::ostream& err,
const bool simulate faulty behaviour =false)

This is the two-party version of the above method. Thus there are only an input stream
in and output stream out for communication between the players. The other arguments
are as above.

[Destructor on JareckiLysyanskayaEDCF]~JareckiLysyanskayaEDCF ()
This destructor releases all occupied resources.

2.2.3.4 Verifiable Secret Shuffle of Homomorphic Encryptions

Recently, Groth [Gr05, Gr10] has proposed a very efficient solution to perform a verifiable
shuffle of homomorphically encrypted values. He describes an honest verifier zero-knowledge
argument which shows the correctness of a shuffle. Beside other applications (e.g. verifiable mix
networks, electronic voting) his protocol can be used to show (with overwhelming probability)
that the secret shuffle of a deck of cards was performed correctly. The computational complexity
and the produced communication traffic are superior to previously deployed techniques (e.g.
Schindelhauer’s cut-and-choose method). LibTMCG provides the first known implementation
of Groth’s famous protocol. However, it can only be used along with the VTMF card encoding
scheme of Barnett and Smart [BS03] based on the hardness of computing discrete logarithms.

Our implementation uses a generalized variant [Gr05, Gr10] of the statistically hiding
and computationally binding homomorphic commitment scheme due to Pedersen (see Non-
interactive and Information-theoretic Secure Verifiable Secret Sharing, CRYPTO ’91, LNCS 576,
1992). The binding property relies on the hardness of computing discrete logarithms in G w.r.t.
random bases g1, . . . , gn and thus a commitment is only binding for computationally bounded
provers.10 But this choice seems to be reasonable for the intention of LibTMCG, because all
players are supposed to be computationally bounded. The security parameters of the commit-
ment scheme (in particular the group G) are determined by the corresponding VTMF instance.

Since version 1.2.0 of LibTMCG we use a two-party version of a distributed coin flipping
protocol by Jarecki and Lysyanskaya [JL00] to protect against malicious verifiers attacking the
zero-knowledge property. Since version 1.3.0 there is an additional method for generating the
bases g1, . . . , gn of the Pedersen commitment scheme by distributed coin flipping and a verifiable
generation procedure similar to FIPS 186-3 A.2.3. This step is important in order to ensure,
that a malicious prover cannot compute loggi h resp. logh gi, for some i = 1, . . . , n, and thus
erroneously pass the shuffle verification. It improves our former security model which considered
only a passive adversary.

Further, to the best of our knowledge it is not known, whether Groth’s protocol retains
the zero-knowledge property when it is executed in a concurrent setting. Thus the application
programmer should be careful and avoid parallel invocations of the same instance.

[Class]GrothVSSHE
This class provides the low-level interface for Groth’s protocol. There are just a few methods
that might be of general interest. All other components are only used internally by high-level
operations and thus their description is omitted here.

10 Strictly speaking, due to this reason Groth’s protocol is a zero-knowledge argument instead of a zero-knowledge
proof. However, for convenience we will not distinguish between these terms here.
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[Constructor on GrothVSSHE]GrothVSSHE (size_t n, mpz_srcptr p ENC,
mpz_srcptr q ENC, mpz_srcptr k ENC, mpz_srcptr g ENC,
mpz_srcptr h ENC, unsigned long int ell e =TMCG_GROTH_L_E,
unsigned long int fieldsize =TMCG_DDH_SIZE, unsigned long int
subgroupsize =TMCG_DLSE_SIZE)

This constructor creates a new instance. The low-level operations are later used to show
the correctness of a shuffle of at most n cards. The protocol and some parameters of the
commitment scheme are initialized by the members of the corresponding VTMF instance.
Consequently, p ENC is the prime number p which determines the field Z/pZ, q ENC
is the order of the underlying subgroup G, i.e. the prime number q, and k ENC is the
integer such that p = qk + 1 holds. Further, g ENC is the generator g of this subgroup,
and finally h ENC is the common public key h. The positive integer ell e is the security
parameter which controls the soundness error probability (2−`e) of the protocol. The
default value is defined by TMCG_GROTH_L_E, if this argument is omitted. The fieldsize
and the subgroupsize are supplied to internal classes and are only of interest, if p ENC
or q ENC have lengths different from the default. If these arguments are omitted, they
are set to TMCG_DDH_SIZE and TMCG_DLSE_SIZE, respectively.

This constructor should be instantiated only once by the session leader. All other instances
can be created by the second constructor. Further, it is very important that the VTMF key
generation protocol has been finished before the value of h is passed to the constructors.
Otherwise, the correctness verification of the shuffle will fail.

Note that the generators g1, . . . , gn of the Pedersen commitment scheme are randomly and
uniformly chosen from Zq by the session leader. However, this is not verifiable by other
parties and a malicious leader can choose gj := hξj mod p for some secret ξj ∈ Zq where
1 ≤ j ≤ n. Thus it is importand to call SetupGenerators_publiccoin during game
initialization before any shuffle verification is performed.

[Constructor on GrothVSSHE]GrothVSSHE (size_t n, std::istream& in, unsigned
long int ell e =TMCG_GROTH_L_E, unsigned long int fieldsize
=TMCG_DDH_SIZE, unsigned long int subgroupsize =TMCG_DLSE_SIZE)

This constructor initializes the instance from a correctly formatted input stream in. For
example, such a stream can be generated by calling the method PublishGroup of an
already created instance. Later the instance can be used to show the correctness of a shuffle
of at most n cards. The positive integer ell e controls the soundness error probability of
the protocol. The default value is defined by TMCG_GROTH_L_E, if this argument is omitted.

Note that the generators g1, . . . , gn of the Pedersen commitment scheme are randomly and
uniformly chosen from Zq by the session leader. However, this is not verifiable by other
parties and a malicious leader can choose gj := hξj mod p for some secret ξj ∈ Zq and
1 ≤ j ≤ n. Thus it is necessary to call the method SetupGenerators_publiccoin before
any shuffle verification is performed.

[Method on GrothVSSHE]void SetupGenerators_publiccoin (mpz_srcptr a)
This is a simple method to setup the generators g1, . . . , gn of the internal Pedersen com-
mitment scheme by using a common random value a for a verifiable generation procedure
similar to FIPS 186-3 A.2.3. Note that the same a must be used by all participants and
that this value should be different for each game session.

[Method on GrothVSSHE]bool SetupGenerators_publiccoin (size_t whoami,
aiounicast* aiou, CachinKursawePetzoldShoupRBC* rbc,
JareckiLysyanskayaEDCF* edcf, std::ostream& err)

This method setup the generators g1, . . . , gn of the internal Pedersen commitment scheme
by using a distributed coinflip protocol [JL00] and a verifiable generation procedure similar
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to FIPS 186-3 A.2.3. Assuming at least one honest player these values are randomly and
uniformly chosen from Zq such that loggi h and logh gi are unkown, for all i = 1, . . . , n. The
argument whoami is an index of the running instance with respect to already initialized
instances of asynchronous point-to-point channels aiou and a reliable broadcast channel
rbc. Logging and debug messages are printed to the provided output stream err. The
method returns true, if all generators have been setup successfully.

[Method on GrothVSSHE]bool CheckGroup ()
This method checks whether the initialized commitment scheme is sound. It returns true,
if all tests have been passed successfully.

[Method on GrothVSSHE]void PublishGroup (std::ostream& out)
This method exports the instance configuration to the output stream out such that other
instances can be initialized, e.g. with the second constructor.

[Destructor on GrothVSSHE]~GrothVSSHE ()
This destructor releases all occupied resources.

2.2.3.5 Verifiable Rotation of Homomorphic Encryptions

De Hoogh, Schoenmakers, Skoric, and Villegas [HSSV09] has proposed an efficient solution to
perform a verifiable rotation (also known as cyclic shift) of homomorphically encrypted values.
Other solutions (e.g. Reiter and Wang, Fragile Mixing, ACM CCS, 2004) do not provide that
level of efficency. LibTMCG provides the first known implementation of their protocol. It can
only be used with the VTMF card encoding scheme of Barnett and Smart [BS03].

Further, to the best of our knowledge it is not known, whether their protocol retains the
zero-knowledge property when it is executed in a concurrent setting. Thus the application
programmer should be careful and avoid parallel invocations of the same instance.

[Class]HooghSchoenmakersSkoricVillegasVRHE
This class provides the low-level interface for their protocol. There are just a few methods
that might be of general interest. All other components are only used internally by high-level
operations and thus their description is omitted here.

[Constructor on HooghSchoenmakersSkoricVillegasVRHE]HooghSchoenmakersSkoricVillegasVRHE
(mpz_srcptr p ENC, mpz_srcptr q ENC, mpz_srcptr k ENC,
mpz_srcptr g ENC, mpz_srcptr h ENC, unsigned long int fieldsize
=TMCG_DDH_SIZE, unsigned long int subgroupsize =TMCG_DLSE_SIZE)

This constructor creates a new instance. The low-level operations are later used to show
the correctness of a rotation of the cards. The protocol and some of its parameters are
initialized by the members of the corresponding VTMF instance. Consequently, p ENC is
the prime number p which determines the field Z/pZ, q ENC is the order of the underlying
subgroup G, i.e. the prime number q, and k ENC is the integer such that p = qk+1 holds.
Further, g ENC is the generator g, and finally h ENC is the common public key h. The
fieldsize and the subgroupsize are supplied to internal classes and are only of interest, if
p ENC or q ENC have lengths different from the default. If these arguments are omitted,
they are set to TMCG_DDH_SIZE and TMCG_DLSE_SIZE, respectively.

This constructor should be instantiated only once by the session leader. All other instances
must be created by the second constructor. Further, it is very important that the VTMF
key generation protocol has been finished before the value of h is passed to the constructor.
Otherwise, the correctness verification will definitely fail.
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[Constructor on HooghSchoenmakersSkoricVillegasVRHE]HooghSchoenmakersSkoricVillegasVRHE
(std::istream& in, unsigned long int fieldsize =TMCG_DDH_SIZE,
unsigned long int subgroupsize =TMCG_DLSE_SIZE)

This constructor initializes the instance from a correctly formatted input stream in. For
example, such a stream can be generated by calling the method PublishGroup of an
already created instance. Later the instance can be used to show the correctness of a
rotation.

[Method on HooghSchoenmakersSkoricVillegasVRHE]bool CheckGroup ()
This method checks whether the initialized commitment scheme is sound. It returns true,
if all tests have been passed successfully.

[Method on HooghSchoenmakersSkoricVillegasVRHE]void PublishGroup
(std::ostream& out)

This method exports the instance configuration to the output stream out such that other
instances can be initialized, e.g. with the second constructor.

[Destructor on HooghSchoenmakersSkoricVillegasVRHE]~HooghSchoenmakersSkoricVillegasVRHE
()

This destructor releases all occupied resources.

2.2.3.6 Toolbox for Mental Card Games

This section explains the main class of LibTMCG which provides some “high-level operations”
from Schindelhauer’s toolbox [Sc98]. Even if the more efficient card encoding scheme of Barnett
and Smart [BS03] will deployed in your application, at least one instance of the following class
must be created to perform any card or stack operations.

[Class]SchindelhauerTMCG
This class implements the main core of Schindelhauer’s toolbox, i.e. important functions like
masking, opening, and shuffling of cards and stacks, respectively. Some exotic operations are
still missing, e.g., the possibility to insert a masked card secretly into a stack or the verifiable
subset properties of stacks. All implemented operations are available for the original encoding
scheme of Schindelhauer (see Section 2.2.1 [Data Types], page 11) and, of course, for the more
efficient encoding scheme of Barnett and Smart (see Section 2.2.3.2 [BarnettSmartVTMF],
page 29) as well.

[Member of SchindelhauerTMCG]unsigned long int TMCG_SecurityLevel
This read-only nonnegative integer represents the security parameter κ which was given
to the constructor of this class. It defines the number of sequential protocol iterations and
hence the soundness error probability (2−κ) of the zero-knowledge proofs in the encoding
scheme of Schindelhauer. Further it defines the soundness error probability (also 2−κ) of
the shuffle argument in the encoding scheme of Barnett and Smart, if the efficient protocols
of Groth [Gr05, Gr10] and others [HSSV09] are not used.

[Member of SchindelhauerTMCG]size_t TMCG_Players
This read-only nonnegative integer represents the number of players as given to the con-
structor of this class.

[Member of SchindelhauerTMCG]size_t TMCG_TypeBits
This read-only nonnegative integer contains the number of bits that are necessary to
encode the card types in the binary representation. It was given as an argument to the
constructor of this class.
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[Constructor on SchindelhauerTMCG]SchindelhauerTMCG (const unsigned long
int security, const size_t k, const size_t w)

This constructor creates an instance, where security is a nonnegative integer that rep-
resents the security parameter κ. The parameter k is the number of players and w is
the number of bits which are necessary to represent all possible card types in a binary
representation.

The integer κ controls the maximum soundness error probability (2−κ) of the zero-
knowledge proofs in the encoding scheme of Schindelhauer. Specifically, security defines
the number of sequential iterations of the involved protocols and thus has a major impact
on the computational and communication complexity. If the encoding scheme of Barnett
and Smart [BS03] is used, then it only defines the soundness error probability (also 2−κ)
of the corresponding shuffle proof. However, if the efficient shuffle verification protocol
of Groth [Gr05] is used, then the parameter security is dispensable, because the param-
eter ell e given during instantiation of GrothVSSHE (e.g. the LibTMCG default security
parameter TMCG_GROTH_L_E) determines this soundness error probability (2−`e). The sim-
ilar holds for the verifiable rotation protocol [HSSV09], however, in this case there is no
explicit security parameter for the soundness error.

Unfortunately, the parameters k and w have a major impact on the complexity in the
encoding scheme of Schindelhauer, too. Therefore you should always use reasonable values
here. For example, to create a deck with M different card types simply set w to dlog2Me
which is an tight upper-bound for the applied binary representation. Furthermore, set
k to the number of players which are really involved and not to a possible maximum
value. Note that k and w are limited by the global constants TMCG_MAX_PLAYERS and
TMCG_MAX_TYPEBITS, respectively.

[Method on SchindelhauerTMCG]void TMCG_CreateOpenCard (TMCG_Card& c,
const TMCG_PublicKeyRing& ring, const size_t type)

This method initializes the open card c with the given type using the encoding scheme
of Schindelhauer. The type MUST be an integer from the interval [0, 2w − 1], where w is
the number given to the constructor of this class. The w MUST be the same number as
used at creation of c (see Section 2.2.1 [Data Types], page 11). The parameter ring is a
container with exactly k public keys, where k is the number given to the constructor of
this class. The k MUST be the same number as used at the creation of c.

[Method on SchindelhauerTMCG]void TMCG_CreateOpenCard (VTMF_Card& c,
BarnettSmartVTMF_dlog* vtmf, const size_t type)

This method initializes the open card c with the given type using the encoding scheme of
Barnett and Smart. The type MUST be an integer from the interval [0, 2w−1], where w is
the number given to the constructor of this class. The parameter vtmf is a pointer to an
already initialized VTMF instance, i.e. the key generation protocol was successfully fin-
ished (see Section 2.2.3.2 [BarnettSmartVTMF], page 29, and BarnettSmartVTMF_dlog_

GroupQR, respectively).

[Method on SchindelhauerTMCG]void TMCG_CreateCardSecret
(TMCG_CardSecret& cs, const TMCG_PublicKeyRing& ring, const size_t
index)

This method initializes the card secret cs with random values which is necessary to perform
later a masking operation on a card. The parameter ring is a container with exactly k
public keys, where k is the number given to the constructor of this class. It MUST be the
same number as used at the creation of cs (see Section 2.2.1 [Data Types], page 11). The
parameter index is from the interval [0, k − 1] and determines the position of the players
public key in the container ring.
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[Method on SchindelhauerTMCG]void TMCG_CreateCardSecret
(VTMF_CardSecret& cs, BarnettSmartVTMF_dlog* vtmf)

This method initializes the card secret cs with a random value which is necessary to
perform later a masking operation on a card. The parameter vtmf is a pointer to an
already initialized VTMF instance, i.e. the key generation protocol MUST be successfully
finished (see Section 2.2.3.2 [BarnettSmartVTMF], page 29).

[Method on SchindelhauerTMCG]void TMCG_CreatePrivateCard (TMCG_Card& c,
TMCG_CardSecret& cs, const TMCG_PublicKeyRing& ring, const size_t
index, const size_t type)

This method initializes a masked card c with the given type and a corresponding card
secret cs using the encoding scheme of Schindelhauer. The type MUST be an integer from
the interval [0, 2w − 1], where w is the number given to the constructor of this class. The
w MUST be the same number as used at creation of c and cs (see Section 2.2.1 [Data
Types], page 11). The parameter ring is a container with exactly k public keys, where k
is the number given to the constructor of this class. The k MUST be the same number
as used at the creation of c and cs. The parameter index is from the interval [0, k − 1]
and determines the position of the players public key in the container ring. Internally,
TMCG_CreatePrivateCard calls

1. TMCG_CreateOpenCard to initialize c with type,

2. TMCG_CreateCardSecret to initialize cs with random values, and

3. TMCG_MaskCard to mask c with the secret cs.

[Method on SchindelhauerTMCG]void TMCG_CreatePrivateCard (VTMF_Card& c,
VTMF_CardSecret& cs, BarnettSmartVTMF_dlog* vtmf, const size_t
type)

This method initializes a masked card c with the given type and a corresponding card
secret cs using the encoding scheme of Barnett and Smart. The type MUST be an integer
from the interval [0, 2w − 1], where w is the number given to the constructor of this class.
The parameter vtmf is a pointer to an already initialized VTMF instance, i.e. the key gen-
eration protocol MUST be successfully finished (see Section 2.2.3.2 [BarnettSmartVTMF],
page 29). Specifically, TMCG_CreatePrivateCard directly executes the masking operation
of the verifiable masking protocol.

[Method on SchindelhauerTMCG]void TMCG_MaskCard (const TMCG_Card& c,
TMCG_Card& cc, const TMCG_CardSecret& cs, const
TMCG_PublicKeyRing& ring, const bool TimingAttackProtection =true)

This method performs a masking operation on the open or already masked card c using
the encoding scheme of Schindelhauer. Finally it returns the result in cc. The parameter
cs MUST be an initialized fresh card secret which has NEVER been involved in a masking
operation before. The parameters c, cc, and cs MUST be created such that their k and
w corresponds to the numbers given to the constructor of this class, respectively. The
parameter ring is a container with exactly k public keys. The protection against timing
attacks is turned on, if TimingAttackProtection is set to true.

[Method on SchindelhauerTMCG]void TMCG_MaskCard (const VTMF_Card& c,
VTMF_Card& cc, const VTMF_CardSecret& cs, BarnettSmartVTMF_dlog*
vtmf, const bool TimingAttackProtection =true)

This method performs a masking operation on the open or already masked card c using
the encoding scheme of Barnett and Smart. Finally it returns the result in cc. Specifically,
TMCG_MaskCard directly executes the masking operation of the verifiable re-masking pro-
tocol. The parameter cs MUST be an initialized fresh card secret which has NEVER been
involved in a masking operation before. The parameter vtmf is a pointer to an already
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initialized VTMF instance, i.e. the key generation protocol MUST be successfully fin-
ished (see Section 2.2.3.2 [BarnettSmartVTMF], page 29). The protection against timing
attacks is turned on, if TimingAttackProtection is set to true.

[Method on SchindelhauerTMCG]void TMCG_ProveMaskCard (const TMCG_Card&
c, const TMCG_Card& cc, const TMCG_CardSecret& cs, const
TMCG_PublicKeyRing& ring, std::istream& in, std::ostream& out)

This method should be called by the prover after TMCG_MaskCard to show that he per-
formed the masking operation correctly. The parameters c, cc, and cs are the input, the
result, and the used card secret of TMCG_MaskCard, respectively. They MUST be created
such that their k resp. w corresponds to the numbers given to the constructor of this class.
The parameter ring is a container with exactly k public keys. The input/output protocol
messages from and to the verifier are transmitted on the streams in and out, respectively.

[Method on SchindelhauerTMCG]void TMCG_ProveMaskCard (const VTMF_Card&
c, const VTMF_Card& cc, const VTMF_CardSecret& cs,
BarnettSmartVTMF_dlog* vtmf, std::istream& in, std::ostream& out)

This method should be executed by the prover after calling TMCG_MaskCard to show that
he performed the masking operation correctly. Specifically, TMCG_ProveMaskCard directly
calls the prove operation of the verifiable re-masking protocol. The parameters c, cc, and
cs are the input, the result, and the used card secret of TMCG_MaskCard, respectively.
The parameter vtmf is a pointer to an already initialized VTMF instance, i.e. the key
generation protocol MUST be successfully finished. The input/output protocol messages
from and to the verifier are transmitted on the streams in and out, respectively.

[Method on SchindelhauerTMCG]bool TMCG_VerifyMaskCard (const TMCG_Card&
c, const TMCG_Card& cc, const TMCG_PublicKeyRing& ring,
std::istream& in, std::ostream& out)

This method should be executed by the verifier to check whether or not a masking op-
eration was performed correctly. The parameters c and cc are the input and the result
of TMCG_MaskCard, respectively. They MUST be created such that their k resp. w cor-
responds to the numbers given to the constructor of this class. The parameter ring is a
container with exactly k public keys. The input/output protocol messages from and to
the prover are transmitted on the streams in and out, respectively. The method returns
true, if everything was sound.

[Method on SchindelhauerTMCG]bool TMCG_VerifyMaskCard (const VTMF_Card&
c, const VTMF_Card& cc, BarnettSmartVTMF_dlog* vtmf, std::istream&
in, std::ostream& out)

This method should be executed by the verifier to check whether or not a masking opera-
tion was performed correctly. Specifically, TMCG_VerifyMaskCard directly calls the verify
operation of the verifiable re-masking protocol. The parameters c and cc are the input
and the result of TMCG_MaskCard, respectively. The parameter vtmf is a pointer to an
already initialized VTMF instance, i.e. the key generation protocol MUST be successfully
finished. The input/output protocol messages from and to the prover are transmitted on
the streams in and out, respectively. The method returns true, if everything was sound.

[Method on SchindelhauerTMCG]void TMCG_ProveCardSecret (const
TMCG_Card& c, const TMCG_SecretKey& key, const size_t index,
std::istream& in, std::ostream& out)

This method is used to reveal the card type of c to a verifier. Every player must execute
this method as prover. The card c MUST be created such that its k resp. w corresponds
to the numbers given to the constructor of this class. The parameter key is the corre-
sponding secret key (see Section 2.2.1 [Data Types], page 11) of the prover. The parameter
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index is from the interval [0, k − 1] and contains the position of the provers public key
in the container ring (same as in TMCG_CreateCardSecret). The input/output protocol
messages from and to the verifier are transmitted on the streams in and out, respectively.

[Method on SchindelhauerTMCG]void TMCG_ProveCardSecret (const
VTMF_Card& c, BarnettSmartVTMF_dlog* vtmf, std::istream& in,
std::ostream& out)

This method is used to reveal the card type of c to a verifier. Every player must exe-
cute this method as prover. Specifically, TMCG_ProveCardSecret directly calls the prove
operation of the verifiable decryption protocol. The parameter vtmf is a pointer to an
already initialized VTMF instance, i.e. the key generation protocol MUST be successfully
finished. The input/output protocol messages from and to the verifier are transmitted on
the streams in and out, respectively.

[Method on SchindelhauerTMCG]bool TMCG_VerifyCardSecret (const
TMCG_Card& c, TMCG_CardSecret& cs, const TMCG_PublicKey& key, const
size_t index, std::istream& in, std::ostream& out)

This method is used to verify and accumulate card type information regarding c that are
supplied by a prover. It is the opposite method of TMCG_ProveCardSecret and must be
executed by the player who wants to know the type. The secrets provided by the single
provers are accumulated in the parameter cs. Thus c and cs MUST be created such that
their k resp. w corresponds to the numbers given to the constructor of this class. The
parameter key is the corresponding public key (see Section 2.2.1 [Data Types], page 11) of
the prover. The parameter index is from the interval [0, k−1] and contains the position of
the provers public key in the container ring (same as in TMCG_CreateCardSecret). The
input/output protocol messages from and to the prover are transmitted on the streams in
and out, respectively.

[Method on SchindelhauerTMCG]bool TMCG_VerifyCardSecret (const
VTMF_Card& c, BarnettSmartVTMF_dlog* vtmf, std::istream& in,
std::ostream& out)

This method is used to verify and accumulate card type information regarding c that
are supplied by a prover. It is the opposite method of TMCG_ProveCardSecret and must
be executed by the player who wants to know the type. The secrets provided by the
single provers are accumulated internally, thus this method cannot be interleaved with
the opening of other cards. Specifically, TMCG_VerifyCardSecret directly calls the verify
and update operation of the verifiable decryption protocol. The parameter vtmf is a
pointer to an already initialized VTMF instance, i.e. the key generation protocol MUST
be successfully finished. The input/output protocol messages from and to the verifier are
transmitted on the streams in and out, respectively.

[Method on SchindelhauerTMCG]void TMCG_SelfCardSecret (const TMCG_Card&
c, TMCG_CardSecret& cs, const TMCG_SecretKey& key, const size_t
index)

This method is used to compute and accumulate card type information regarding c. Anal-
ogously to TMCG_VerifyCardSecret it must be executed by the player who wants to know
the type of c. The information is accumulated in the parameter cs. Thus c and cs MUST
be created such that their k resp. w corresponds to the numbers given to the constructor
of this class. The parameter key is the corresponding secret key (see Section 2.2.1 [Data
Types], page 11) of the player. The parameter index is from the interval [0, k − 1] and
contains the position of the players public key in the container ring (same as in TMCG_

CreateCardSecret).
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[Method on SchindelhauerTMCG]void TMCG_SelfCardSecret (const VTMF_Card&
c, BarnettSmartVTMF_dlog* vtmf)

This method is used to compute and accumulate card type information regarding c.
It MUST be called by the player who wants to know the type of c BEFORE TMCG_

VerifyCardSecret and TMCG_TypeOfCard are executed. The secrets provided by the
player are accumulated internally, thus this method cannot be interleaved with the open-
ing of other cards. Specifically, TMCG_SelfCardSecret directly calls the initialize opera-
tion of the verifiable decryption protocol. The parameter vtmf is a pointer to an already
initialized VTMF instance, i.e. the key generation protocol MUST be successfully finished.

[Method on SchindelhauerTMCG]size_t TMCG_TypeOfCard (const
TMCG_CardSecret& cs)

This method returns the type of a masked card provided that the type information
were properly accumulated in cs before (by calling TMCG_SelfCardSecret and TMCG_

VerifyCardSecret, respectively).

[Method on SchindelhauerTMCG]size_t TMCG_TypeOfCard (const VTMF_Card& c,
BarnettSmartVTMF_dlog* vtmf)

This method returns the type of a masked card c provided that the type information re-
garding c were properly accumulated internally before (by calling TMCG_SelfCardSecret

and TMCG_VerifyCardSecret, respectively). It returns the value TMCG_MaxCardType, if
the opening operation failed or if the card type was not among the set of valid types.
This method MUST be performed by the player who wants to know the type AFTER
TMCG_SelfCardSecret and TMCG_VerifyCardSecret are executed. Specifically, TMCG_

TypeOfCard directly calls the finalize operation of the verifiable decryption protocol. The
parameter vtmf is a pointer to an already initialized VTMF instance, i.e. the key gener-
ation protocol MUST be successfully finished.

[Method on SchindelhauerTMCG]size_t TMCG_CreateStackSecret
(TMCG_StackSecret<TMCG_CardSecret>& ss, const bool cyclic, const
TMCG_PublicKeyRing& ring, const size_t index, const size_t size)

This method initializes the stack secret ss with a randomly and uniformly chosen permu-
tation (using the algorithm of Knuth) and fresh card secrets. Later this stack secret can
be used to perform a secret shuffle operation on a stack. If the parameter cyclic is set to
true, then the permutation is only a cyclic shift which might be of interest for particular
operations, e.g. cutting the deck. The parameter ring is a container with exactly k public
keys, where k is the number given to the constructor of this class. The parameter index
is from the interval [0, k − 1] and contains the position of the players public key in the
container ring. The parameter size determines the size of the created stack secret, i.e.
the number of cards in the corresponding stack. The size is upper-bounded by TMCG_

MAX_CARDS. The method returns the offset of the cyclic shift, if cyclic was set to true.
Otherwise, the value 0 is returned.

[Method on SchindelhauerTMCG]size_t TMCG_CreateStackSecret
(TMCG_StackSecret<VTMF_CardSecret>& ss, const bool cyclic, const
size_t size, BarnettSmartVTMF_dlog* vtmf)

This method initializes the stack secret ss with a randomly and uniformly chosen per-
mutation (using the algorithm of Knuth) and fresh card secrets. Later this stack secret
can be used to perform a secret shuffle operation on a stack. If the parameter cyclic is
set to true, then the permutation is only a cyclic shift which might be of interest for
particular operations, e.g. cutting the deck. The parameter size determines the size of
the created stack secret, i.e. the number of cards in the corresponding stack. The size is
upper-bounded by TMCG_MAX_CARDS. The parameter vtmf is a pointer to an already ini-
tialized VTMF instance, i.e. the key generation protocol MUST be successfully finished.
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The method returns the offset of the cyclic shift, if cyclic was set to true. Otherwise, the
value 0 is returned.

[Method on SchindelhauerTMCG]void TMCG_CreateStackSecret
(TMCG_StackSecret<TMCG_CardSecret>& ss, const
std::vector<size_t>& pi, const TMCG_PublicKeyRing& ring, const
size_t index, const size_t size)

This method initializes the stack secret ss with a given permutation pi and fresh card
secrets. Later this stack secret can be used to perform a secret shuffle operation on a
stack. The parameter ring is a container with exactly k public keys, where k is the
number given to the constructor of this class. The parameter index is from the interval
[0, k − 1] and contains the position of the players public key in the container ring. The
parameter size determines the size of the created stack secret, i.e. the number of cards in
the corresponding stack. The size is upper-bounded by TMCG_MAX_CARDS.

[Method on SchindelhauerTMCG]void TMCG_CreateStackSecret
(TMCG_StackSecret<VTMF_CardSecret>& ss, const
std::vector<size_t>& pi, const size_t size, BarnettSmartVTMF_dlog*
vtmf)

This method initializes the stack secret ss with a given permutation pi and fresh card
secrets. Later this stack secret can be used to perform a secret shuffle operation on a
stack. The parameter size determines the size of the created stack secret, i.e. the number
of cards in the corresponding stack. The size is upper-bounded by TMCG_MAX_CARDS.
The parameter vtmf is a pointer to an already initialized VTMF instance, i.e. the key
generation protocol MUST be successfully finished.

[Method on SchindelhauerTMCG]void TMCG_MixStack (const
TMCG_Stack<TMCG_Card>& s, TMCG_Stack<TMCG_Card>& s2, const
TMCG_StackSecret<TMCG_CardSecret>& ss, const TMCG_PublicKeyRing&
ring, const bool TimingAttackProtection =true)

This method shuffles a given stack s according to the previously created stack secret ss
(see Section 2.2.1 [Data Types], page 11). The result of the shuffle is returned in s2. The
parameter ss MUST be a fresh stack secret which has NEVER been involved in a shuffle
operation before. The parameters s and ss MUST be of the same size. The parameter ring
is a container with exactly k public keys, where k is the number given to the constructor of
this class. The protection against timing attacks is turned on, if TimingAttackProtection
is set to true.

[Method on SchindelhauerTMCG]void TMCG_MixStack (const
TMCG_Stack<VTMF_Card>& s, TMCG_Stack<VTMF_Card>& s2, const
TMCG_StackSecret<VTMF_CardSecret>& ss, BarnettSmartVTMF_dlog*
vtmf, const bool TimingAttackProtection =true)

This method shuffles a given stack s according to the previously created stack secret ss
(see Section 2.2.1 [Data Types], page 11). The result of the shuffle is returned in s2. The
parameter ss MUST be a fresh stack secret which has NEVER been involved in a shuffle
operation before. The parameters s and ss MUST be of the same size. The parameter
vtmf is a pointer to an already initialized VTMF instance, i.e. the key generation protocol
MUST be successfully finished. The protection against timing attacks is turned on, if
TimingAttackProtection is set to true.
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[Method on SchindelhauerTMCG]void TMCG_ProveStackEquality (const
TMCG_Stack<TMCG_Card>& s, const TMCG_Stack<TMCG_Card>& s2, const
TMCG_StackSecret<TMCG_CardSecret>& ss, const bool cyclic, const
TMCG_PublicKeyRing& ring, const size_t index, std::istream& in,
std::ostream& out)

This method should be called by the prover after TMCG_MixStack to show that he per-
formed the shuffle operation correctly. The parameters s, s2, and ss are the input, the
result, and the used stack secret of TMCG_MixStack, respectively. Of course, the parame-
ters s, s2, and ss MUST be of the same size. The parameter cyclic determines whether a
cyclic shift or a full permutation was used to shuffle the stack. The parameter ring is a
container with exactly k public keys, where k is the number given to the constructor of
this class. The parameter index is from the interval [0, k − 1] and contains the position
of the provers public key in the container ring. The input/output protocol messages from
and to the verifier are transmitted on the streams in and out, respectively.

[Method on SchindelhauerTMCG]void TMCG_ProveStackEquality (const
TMCG_Stack<VTMF_Card>& s, const TMCG_Stack<VTMF_Card>& s2, const
TMCG_StackSecret<VTMF_CardSecret>& ss, const bool cyclic,
BarnettSmartVTMF_dlog* vtmf, std::istream& in, std::ostream& out)

This method should be called by the prover after TMCG_MixStack to show that he per-
formed the shuffle operation correctly. The parameters s, s2, and ss are the input, the
result, and the used stack secret of TMCG_MixStack, respectively. Of course, the parame-
ters s, s2, and ss MUST be of the same size. The parameter cyclic determines whether a
cyclic shift or a full permutation was used to shuffle the stack. The parameter vtmf is a
pointer to an already initialized VTMF instance, i.e. the key generation protocol MUST
be successfully finished. The input/output protocol messages from and to the verifier are
transmitted on the streams in and out, respectively.

[Method on SchindelhauerTMCG]void TMCG_ProveStackEquality_Groth (const
TMCG_Stack<VTMF_Card>& s, const TMCG_Stack<VTMF_Card>& s2, const
TMCG_StackSecret<VTMF_CardSecret>& ss, BarnettSmartVTMF_dlog*
vtmf, GrothVSSHE* vsshe, std::istream& in, std::ostream& out)

This is a method like above. The only difference is that the more efficient interactive
shuffle verification protocol of Groth [Gr05] is used. Thus vsshe is a pointer to a proper
initialized instance of GrothVSSHE. The rest of the arguments are the same.

[Method on SchindelhauerTMCG]void
TMCG_ProveStackEquality_Groth_noninteractive (const
TMCG_Stack<VTMF_Card>& s, const TMCG_Stack<VTMF_Card>& s2, const
TMCG_StackSecret<VTMF_CardSecret>& ss, BarnettSmartVTMF_dlog*
vtmf, GrothVSSHE* vsshe, std::ostream& out)

This is a method like above. The difference is that the non-interactive version of the
shuffle verification protocol is used. Thus only an output stream out is given, for exam-
ple std::stringstream can be appropriate here. Again vsshe is a pointer to a proper
initialized instance of GrothVSSHE. The rest of the arguments are the same.

[Method on SchindelhauerTMCG]void TMCG_ProveStackEquality_Hoogh (const
TMCG_Stack<VTMF_Card>& s, const TMCG_Stack<VTMF_Card>& s2, const
TMCG_StackSecret<VTMF_CardSecret>& ss, BarnettSmartVTMF_dlog*
vtmf, HooghSchoenmakersSkoricVillegasVRHE* vrhe, std::istream&
in, std::ostream& out)

This is a method like above. The only difference is that the more efficient rotation ver-
ification protocol [HSSV09] is used. Thus vrhe is a pointer to an initialized instance of
HooghSchoenmakersSkoricVillegasVRHE. The rest of the arguments are the same.
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[Method on SchindelhauerTMCG]void
TMCG_ProveStackEquality_Hoogh_noninteractive (const
TMCG_Stack<VTMF_Card>& s, const TMCG_Stack<VTMF_Card>& s2, const
TMCG_StackSecret<VTMF_CardSecret>& ss, BarnettSmartVTMF_dlog*
vtmf, HooghSchoenmakersSkoricVillegasVRHE* vrhe, std::ostream&
out)

This is a method like above. The difference is that the non-interactive version of the
rotation verification protocol is used. Thus only an output stream out is given, for example
std::stringstream can be appropriate here. Again vrhe is a pointer to an initialized
instance of HooghSchoenmakersSkoricVillegasVRHE. The rest of the arguments are the
same.

[Method on SchindelhauerTMCG]bool TMCG_VerifyStackEquality (const
TMCG_Stack<TMCG_Card>& s, const TMCG_Stack<TMCG_Card>& s2, const
bool cyclic, const TMCG_PublicKeyRing& ring, std::istream& in,
std::ostream& out)

This method should be executed by the verifier to check whether or not a shuffle operation
was performed correctly. The parameters s and s2 are the input and the result of TMCG_
MixStack, respectively. Of course, the parameters s and s2 should be of the same size.
The parameter cyclic determines whether a cyclic shift or a full permutation was used to
shuffle the stack. The parameter ring is a container with exactly k public keys, where k
is the number given to the constructor of this class. The input/output protocol messages
from and to the prover are transmitted on the streams in and out, respectively. This
method returns true, if the shuffle operation was successfully verified.

[Method on SchindelhauerTMCG]bool TMCG_VerifyStackEquality (const
TMCG_Stack<VTMF_Card>& s, const TMCG_Stack<VTMF_Card>& s2, const
bool cyclic, BarnettSmartVTMF_dlog* vtmf, std::istream& in,
std::ostream& out)

This method should be executed by the verifier to check whether or not a shuffle operation
was performed correctly. The parameters s and s2 are the input and the result of TMCG_
MixStack, respectively. Of course, the parameters s and s2 should be of the same size. The
parameter cyclic determines whether a cyclic shift or a full permutation was used to shuffle
the stack. The parameter vtmf is a pointer to an already initialized VTMF instance, i.e.
the key generation protocol MUST be successfully finished. The input/output protocol
messages from and to the verifier are transmitted on the streams in and out, respectively.
This method returns true, if the shuffle operation was successfully verified.

[Method on SchindelhauerTMCG]bool TMCG_VerifyStackEquality_Groth (const
TMCG_Stack<VTMF_Card>& s, const TMCG_Stack<VTMF_Card>& s2,
BarnettSmartVTMF_dlog* vtmf, GrothVSSHE* vsshe, std::istream& in,
std::ostream& out)

This is a method like above. The only difference is that the more efficient shuffle verification
protocol of Groth is used. Thus vsshe is a pointer to an initialized instance of GrothVSSHE.
The rest of the arguments and the returned values are the same.

[Method on SchindelhauerTMCG]bool
TMCG_VerifyStackEquality_Groth_noninteractive (const
TMCG_Stack<VTMF_Card>& s, const TMCG_Stack<VTMF_Card>& s2,
BarnettSmartVTMF_dlog* vtmf, GrothVSSHE* vsshe, std::istream& in)

This is a method like above. The difference is that the non-interactive version of the
shuffle verification protocol is used. Thus only an input stream in is given, for example
std::stringstream can be appropriate here. Again vsshe is a pointer to an initialized
instance of GrothVSSHE. The rest of the arguments and the returned values are the same.
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[Method on SchindelhauerTMCG]bool TMCG_VerifyStackEquality_Hoogh (const
TMCG_Stack<VTMF_Card>& s, const TMCG_Stack<VTMF_Card>& s2,
BarnettSmartVTMF_dlog* vtmf,
HooghSchoenmakersSkoricVillegasVRHE* vrhe, std::istream& in,
std::ostream& out)

This is a method like above. The only difference is that the more efficient rotation ver-
ification protocol [HSSV09] is used. Thus vrhe is a pointer to an initialized instance of
HooghSchoenmakersSkoricVillegasVRHE. The rest of the arguments and the returned
values are the same.

[Method on SchindelhauerTMCG]bool
TMCG_VerifyStackEquality_Hoogh_noninteractive (const
TMCG_Stack<VTMF_Card>& s, const TMCG_Stack<VTMF_Card>& s2,
BarnettSmartVTMF_dlog* vtmf,
HooghSchoenmakersSkoricVillegasVRHE* vrhe, std::istream& in)

This is a method like above. The difference is that the non-interactive version of the
rotation verification protocol is used. Thus only an input stream in is given, for example
std::stringstream can be appropriate here. Again vrhe is a pointer to an initialized
instance of HooghSchoenmakersSkoricVillegasVRHE. The rest of the arguments and the
returned values are the same.

[Destructor on SchindelhauerTMCG]~SchindelhauerTMCG ()
This destructor releases all occupied resources.
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3 Examples

The following examples explain most of the steps that are necessary to create a secure and
verifiable card game with LibTMCG. We consider an application with five permanent players
(denoted by P0, P1, P2, P3, and P4) and a regular deck of 52 different cards. For convenience only
the more efficient card encoding scheme of Barnett and Smart [BS03] is described. Additionally,
we complete our exposition with code fragments which show the application of the fast shuffle
verification protocol due to Groth [Gr05, Gr10] with an interactive or even non-interactive
instantiation of the zero-knowledge proofs. On modern computers this approach achieves good
real world performance and simultaneously keeps the cheating probability negligible.

Throughout the remaining pages we assume that all players are pairwise connected by authen-
ticated communication channels. These channels are organized in input resp. output streams,
where input_stream[i] resp. output_stream[i] denote the corresponding std::istream

resp. std::ostream instance for the communication with player Pi.
1

3.1 Library Initialization

The very first step that should be done is the initialization of LibTMCG. You can simply perform
this task by calling the function init_libTMCG and evaluating the return code.� �

if (!init_libTMCG())

std::cerr << "Initialization of LibTMCG failed!" << std::endl;
 	
Additionally, in most cases it is useful to check the installed version of the library by com-

paring the desired value with the returned string of the function version_libTMCG.

3.2 Setup Communication Channels

Some multiparty protocols require additional asynchronous point-to-point communication chan-
nels (authenticated and private) and a reliable broadcast channel. The following example shows,
how to setup these channels for player Pi:� �

// create asynchronous private unicast channels

aiounicast_select *aiou = new aiounicast_select(5, i, uP_in, uP_out, uP_key,

aiounicast::aio_scheduler_roundrobin, aiounicast::aio_timeout_short);

// create asynchronous private broadcast channels

aiounicast_select *aiou2 = new aiounicast_select(5, i, bP_in, bP_out, bP_key,

aiounicast::aio_scheduler_roundrobin, aiounicast::aio_timeout_short);

// create an instance of a reliable broadcast protocol (RBC)

std::string myID = "example-poker-libTMCG-reference-manual";

CachinKursawePetzoldShoupRBC *rbc = new CachinKursawePetzoldShoupRBC(5, 1, i,

aiou2, aiounicast::aio_scheduler_roundrobin, aiounicast::aio_timeout_short);

rbc->setID(myID);
 	
We assume that pairwise private keys (e.g. passphrases) have been exchanged (i.e. vector

uP_key resp. bP_key) and point-to-point links (i.e. input file descriptors in vector uP_in resp.
bP_in and output file descriptors in vector uP_out resp. bP_out) have been already established.

1 We assume that the players are ordered in a natural way such that we can use an uniform nomenclature.
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3.3 Session Initialization and Key Generation

In the next step we create an instance of the class SchindelhauerTMCG. The first parameter
determines the number of protocol iterations κ which upper-bounds the cheating probability by
2−κ. In our example the used value 64 defines a maximum cheating probability of 5.421010862 ·
10−20 which is reasonable small for our purposes.2 The second parameter passes the number of
players to the instance which is simply 5 in our case. The last argument defines the number of
bits that are necessary to encode all card types in a binary representation. The given value 6

allows the encoding of 26 = 64 different card types at maximum. This is enough to form our
deck of 52 cards.� �

SchindelhauerTMCG *tmcg = new SchindelhauerTMCG(64, 5, 6);
 	
In our example we would like to use the more efficient encoding scheme of Barnett and Smart,

thus we create an instance of BarnettSmartVTMF_dlog. However, a particular player has to act
as a leader who performs the generation of the group G as a common refrence. In our case P0 will
be the session leader. First, he executes the constructor of the class BarnettSmartVTMF_dlog
that may take some time.� �

BarnettSmartVTMF_dlog *vtmf = new BarnettSmartVTMF_dlog();
 	
Afterwards he checks the generated group G and sends the public parameters to all other

players (their corresponding stream indices are 1, 2, 3, and 4, respectively).� �
if (!vtmf->CheckGroup())

std::cerr << "Group G was not correctly generated!" << std::endl;

for (size_t i = 1; i < 5; i++)

vtmf->PublishGroup(output_stream[i]);
 	
The other players receive the group parameters from P0 and use them to initialize their

corresponding instances of BarnettSmartVTMF_dlog. It is very important that they also check,
whether the group G was correctly generated by the leader.� �

BarnettSmartVTMF_dlog *vtmf =

new BarnettSmartVTMF_dlog(input_stream[0]);

if (!vtmf->CheckGroup())

std::cerr << "Group G was not correctly generated!" << std::endl;
 	
Afterwards the key generation protocol is carried out. First, every player generates his own

VTMF key. The private key material is stored internally and will never be exposed.� �
vtmf->KeyGenerationProtocol_GenerateKey();
 	

Then every player Pj sends the public part of his VTMF key along with a non-interactive
zero-knowledge proof of knowledge (NIZK) to each other player. The appended proof shows
that he indeed knows the corresponding secret key. However, due to the non-interactive nature
of this proof we have to be careful, if the same group G is eventually used again. It is even
better to generate a fresh group (common reference) and key for each new game session.

2 If we use the encoding scheme of Barnett and Smart and only Groth’s shuffle protocol during the game, then
the error probability is even smaller, because the security parameters of them are fixed within LibTMCG (see
Section 2.1 [Preprocessor Defined Global Symbols], page 8).
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for (size_t i = 0; i < 5; i++)

{

if (i != j)

vtmf->KeyGenerationProtocol_PublishKey(output_stream[i]);

}
 	
After sending, Pj receives the public keys of the other players. Of course she checks, whether

these keys are correctly generated, and she updates the common public key h.� �
for (size_t i = 0; i < 5; i++)

{

if (i != j)

{

if (!vtmf->KeyGenerationProtocol_UpdateKey(input_stream[i]))

std::cerr << "Public key was not correctly generated!" << std::endl;

}

}
 	
Finally, every player must finalize the key generation protocol.� �

vtmf->KeyGenerationProtocol_Finalize();
 	
For some sophisticated parts of LibTMCG a distributed coin flipping protocol is neccesary.

It protects the honest-verifier zero-knowledge proofs or arguments against malicious verifiers.
So, all players should execute as an initialization procedure:� �

JareckiLysyanskayaEDCF *edcf;

edcf = new JareckiLysyanskayaEDCF(5, 5, vtmf->p, vtmf->q, vtmf->g, vtmf->h);

if (!edcf->CheckGroup())

std::cerr << "Group G was not correctly generated!" << std::endl;
 	
If we want to use the more efficient shuffle verification protocol of Groth, then P0 must also

create an instance of GrothVSSHE. The first argument determines the maximum stack size of
which the correctness of a shuffle will be proven. The other parameters are obtained from the
former created VTMF instance vtmf. It is important that the key generation protocol has been
finalized before the common public key h (i.e. vtmf->h) is passed, because this value is checked
within.� �

GrothVSSHE *vsshe = new GrothVSSHE(52, vtmf->p, vtmf->q, vtmf->k,

vtmf->g, vtmf->h);
 	
Again, P0 will send the public parameters of the VSSHE instance to all other players.� �

for (size_t i = 1; i < 5; i++)

vsshe->PublishGroup(output_stream[i]);
 	
The other players receive these parameters from the leader and use them to initialize their

corresponding instances of GrothVSSHE. Again, it is important to check, whether the parameters
were correctly chosen by the leader.
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GrothVSSHE *vsshe = new GrothVSSHE(52, input_stream[0]);

if (!vsshe->CheckGroup())

std::cerr << "VSSHE was not correctly generated!" << std::endl;

if (mpz_cmp(vtmf->h, vsshe->com->h))

std::cerr << "VSSHE: Common public key does not match!" << std::endl;

if (mpz_cmp(vtmf->q, vsshe->com->q))

std::cerr << "VSSHE: Subgroup order does not match!" << std::endl;

if (mpz_cmp(vtmf->p, vsshe->p) || mpz_cmp(vtmf->q, vsshe->q) ||

mpz_cmp(vtmf->g, vsshe->g) || mpz_cmp(vtmf->h, vsshe->h))

std::cerr << "VSSHE: Encryption scheme does not match!" << std::endl;
 	
Last but not least the setup of some internal generators must be accomplished by all players

in a verifiable way (see Section 2.2.3.4 [GrothVSSHE], page 34).3� �
std::stringstream err_log;

if (!vsshe->SetupGenerators_publiccoin(whoami, aiou, rbc, edcf, err_log))

std::cerr << "VSSHE: SetupGenerators_publiccoin() failed!" << std::endl;

// synchronize

rbc->Sync(aiounicast::aio_timeout_short);
 	
3.4 Operations on Cards

Now we are ready to perform several operations on cards. We start with some basic stuff which
might be of interest in particular situations. However, it is often more convenient to work
directly with stacks, as explained later.

3.4.1 Creating an Open Card

The creation of an open card is very simple. The following code creates a card of type 7.� �
VTMF_Card c;

tmcg->TMCG_CreateOpenCard(c, vtmf, 7);
 	
3.4.2 Masking and Re-masking of a Card

Now the previously created card c will be masked to hide its type. Then cc is sent to P1.� �
VTMF_Card cc;

VTMF_CardSecret cs;

tmcg->TMCG_CreateCardSecret(cs, vtmf);

tmcg->TMCG_MaskCard(c, cc, cs, vtmf);

out_stream[1] << cc << std::endl;
 	
P1 receives the card cc, re-masks them, and sends the result ccc back to the player P0.

Further he proves that the masking operation was performed correctly.

3 There is also the possibility to use the simple variant of SetupGenerators_publiccoin with the already
generated public key h as a common random value. However, this value should be refreshed periodically.
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VTMF_Card cc, ccc;

VTMF_CardSecret ccs;

in_stream[0] >> cc;

if (!in_stream[0].good())

std::cerr << "Read or parse error!" << std::endl;

tmcg->TMCG_CreateCardSecret(ccs, vtmf);

tmcg->TMCG_MaskCard(cc, ccc, ccs, vtmf);

out_stream[0] << ccc << std::endl;

tmcg->TMCG_ProveMaskCard(cc, ccc, ccs, vtmf, in_stream[0], out_stream[0]);
 	
P0 receives the card, verifies the proof, and sends the card to all other players.� �

VTMF_Card ccc;

in_stream[1] >> ccc;

if (!tmcg->TMCG_VerifyMaskCard(cc, ccc, vtmf, in_stream[1], out_stream[1]))

std::cerr << "Verification failed!" << std::endl;

for (size_t i = 1; i < 5; i++)

out_stream[i] << ccc << std::endl;
 	
Finally, all other players receive and store the masked card ccc.

3.4.3 Opening a Masked Card

Suppose that P1 would like to know the type of the masked card ccc. Of course, P0 could simply
reveal it, but that isn’t verifiable. Anyway, if all players cooperate, then P1 can compute the
type in a verifiable way. First, every player (except P1) will execute the following code.� �

tmcg->TMCG_ProveCardSecret(ccc, vtmf, in_stream[1], out_stream[1]);
 	
This sends the necessary data to P1 and proves their correctness. On the other hand, P1 will

execute the following commands exactly in the given order. Finally, he obtain the card type in
the variable type. Note that the corresponding function TMCG_VerifyCardSecret is not called
for his own index 1.� �

tmcg->TMCG_SelfCardSecret(ccc, vtmf);

for (size_t i = 0; i < 5; i++)

{

if (i == 1)

continue;

if (!tmcg->TMCG_VerifyCardSecret(ccc, vtmf, in_stream[i], out_stream[i]))

std::cerr << "Verification failed!" << std::endl;

}

type = tmcg->TMCG_TypeOfCard(ccc, vtmf);
 	
Please notice that first TMCG_SelfCardSecret is called, then TMCG_VerifyCardSecret, and

finally TMCG_TypeOfCard.

3.5 Operations on Stacks

There exist a lot of basic operations on stacks, e.g. pushing a card to a stack or importing
a stack. These functions are to simple for explaining them here, but they are used implicitly.
However, a short description can be found in the API part of the manual (see Section 2.2.1
[Data Types], page 11).
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3.5.1 Creating the Deck

A quite common operation is the creation of a card deck. The deck will initially be represented
by an open stack (see TMCG_OpenStack) called deck. Every player creates his own instance of
the deck, which consists of 52 open cards of different type in our example.� �

TMCG_OpenStack<VTMF_Card> deck;

for (size_t type = 0; type < 52; type++)

{

VTMF_Card c;

tmcg->TMCG_CreateOpenCard(c, vtmf, type);

deck.push(type, c);

}
 	
Note that the instances of the deck must be consistent for all players, that means, the order

of the open cards and their types must be exactly the same for all players.

Finally, we copy the deck to a regular stack s for further processing:� �
TMCG_Stack<VTMF_Card> s;

s.push(deck);
 	
3.5.2 Shuffling the Deck

Every player must perform a shuffle of the deck, because only such a procedure guarantees that
no coalition has influence on the outcome. Thus we build a shuffle chain (e.g. using the strict
total order Pi < Pj, if and only if i < j) such that each player shuffles the deck once.

First the regular stack s is initialized with open cards from deck. Then each player shuf-
fles the stack (see Section 2.2.3.6 [SchindelhauerTMCG], page 37, i.e, TMCG_MixStack) using
randomness (see TMCG_CreateStackSecret) and proves the correctness of this operation (see
TMCG_ProveStackEquality). Consequently, every player should verify these proofs (see TMCG_

VerifyStackEquality) and complain deviations immediately. Finally, the stack s contains the
shuffled result. Consider the following code fragment for the player Pj.
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for (size_t i = 0; i < 5; i++)

{

TMCG_Stack<VTMF_Card> s2;

if (i == j)

{

TMCG_StackSecret<VTMF_CardSecret> ss;

tmcg->TMCG_CreateStackSecret(ss, false, s.size(), vtmf);

tmcg->TMCG_MixStack(s, s2, ss, vtmf);

for (size_t i2 = 0; i2 < 5; i2++)

{

if (i2 == j)

continue;

out_stream[i2] << s2 << std::endl;

tmcg->TMCG_ProveStackEquality(s, s2, ss, false, vtmf,

in_stream[i2], out_stream[i2]);

}

}

else

{

in_stream[i] >> s2;

if (!in_stream[i].good())

std::cerr << "Read or parse error!" << std::endl;

if (!tmcg->TMCG_VerifyStackEquality(s, s2, false, vtmf,

in_stream[i], out_stream[i]))

std::cerr << "Verification failed!" << std::endl;

}

s = s2;

}
 	
If you want to use the more efficient shuffle verification protocol of Groth, then

you have to replace TMCG_ProveStackEquality and TMCG_VerifyStackEquality by
TMCG_ProveStackEquality_Groth and TMCG_VerifyStackEquality_Groth, respectively.4

3.5.3 Drawing a Card from the Deck

Now every player has the same shuffled deck s and nobody knows in which order the 52 cards
are stacked. Therefore you can simply use any drawing strategy to obtain a players hand. For
example, look at the following code that draws two cards from s for each player.� �

TMCG_Stack<VTMF_Card> hand[5];

for (size_t i = 0; i < 5; i++)

{

VTMF_Card c1, c2;

s.pop(c1), s.pop(c2);

hand[i].push(c1), hand[i].push(c2);

}
 	
4 The non-interactive version of Groth’s protocol (see TMCG_ProveStackEquality_Groth_noninteractive and
TMCG_VerifyStackEquality_Groth_noninteractive) provides an even more efficient implementation, because
the prover has to compute the argument of correctness only once. Additionallly, it protects agains malicious
verifiers and reduces the communication complexity, i.e. instead of O(n2) the prover must perform only O(n)
steps. Thus this approach is strongly recommended. However, the security then relies on the random oracle
assumption. Please have a look at the included source code tests/t-poker-noninteractive.cc to get a clue.
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Further, probably you want disclose the card types to the corresponding player. Consider
the code fragment for the player Pj: Every player receives the necessary information from the
other players and she computes the card types of her hand hand[j]. Finally, these types are
stored together with the masked cards in the open stack private_hand.� �

TMCG_OpenStack<VTMF_Card> private_hand;

for (size_t i = 0; i < 5; i++)

{

if (i == j)

{

for (size_t k = 0; k < hand[j].size(); k++)

{

tmcg->TMCG_SelfCardSecret(hand[j][k], vtmf);

for (size_t i2 = 0; i2 < 5; i2++)

{

if (i2 == j)

continue;

if (!tmcg->TMCG_VerifyCardSecret(hand[j][k], vtmf,

in_stream[i2], out_stream[i2]))

std::cerr << "Verification failed!" << std::endl;

}

private_hand.push(tmcg->TMCG_TypeOfCard(hand[j][k], vtmf),

hand[j][k]);

}

}

else

{

for (size_t k = 0; k < hand[i].size(); k++)

{

tmcg->TMCG_ProveCardSecret(hand[i][k], vtmf,

in_stream[i], out_stream[i]);

}

}

}
 	
The example can be modified in a straightforward way to publicly disclose a card from a

players hand or from the remaining stack s, i.e. to lay down the card face-up on the table.

3.6 Quit a Session

In the last step you should release all occupied resources.� �
delete vsshe, delete edcf, delete vtmf, delete tmcg;

delete rbc, delete aiou2, delete aiou;
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4 Tools

LibTMCG provides some additional protocols that may be of independent interest.

4.1 Distributed Key Generation and Threshold Cryptography

We have implemented a robust and secure protocol for Distributed Key Generation (DKG) of
public-key cryptosystems (see Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal
Rabin: Secure Distributed Key Generation for Discrete-Log Based Cryptosystems, Journal of
Cryptology, Vol. 20 Nr. 1, Springer 2007). Moreover, LibTMCG also provides a robust and
secure protocol for threshold DSA/DSS (see Ran Canetti, Rosario Gennaro, Stanislaw Jarecki,
Hugo Krawczyk, and Tal Rabin: Adaptive Security for Threshold Cryptosystems, Advances in
Cryptology – Proceedings of CRYPTO ’99, Lecture Notes in Computer Science 1666, Springer
1999). Robustness and security means that up to t ≤ n/2 resp. t ≤ n/3 parties can act
maliciously and the protocols still produce some result (e.g. a valid DSA/DSS signature on a
given hash value).

The current implementation is in experimental state and should not be used in production
environments. Motivation, cryptographical background and some usage scenarios have been pre-
sented recently at 26th Krypto-Tag (GI Working Group) and Datengarten/81 (CCCB). Please
consult the slides for a first overview. The former DKG tools have been removed from this
release. These programs are continued in a separate package called Distributed Privacy Guard
(DKGPG).

Please report any bugs to the maintainer of LibTMCG. Every help with development or
testing of these DKG protocols and programs is very welcome!

http://www.nongnu.org/libtmcg/dg81_slides.pdf
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Appendix A Licenses

A.1 GNU General Public License

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered
by the GNU Lesser General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want
it, that you can change the software or use pieces of it in new free programs; and that you know
you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities
for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone under-
stands that there is no warranty for this free software. If the software is modified by someone
else and passed on, we want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by
the copyright holder saying it may be distributed under the terms of this General Public
License. The “Program”, below, refers to any such program or work, and a “work based
on the Program” means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or with
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modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of
the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole
at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to
print or display an announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide a warranty) and that
users may redistribute the program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on the Program is not
required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also
do one of the following:

a. Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,
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b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distribution,
a complete machine-readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

c. Accompany it with the information you received as to the offer to distribute corre-
sponding source code. (This alternative is allowed only for noncommercial distribution
and only if you received the program in object code or executable form with such an
offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all
modules it contains, plus any associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a special exception, the
source code distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not compelled
to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License. How-
ever, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works.
These actions are prohibited by law if you do not accept this License. Therefore, by modi-
fying or distributing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing
or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations,
then as a consequence you may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by all those who receive
copies directly or indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended
to apply in other circumstances.
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It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which
is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICA-
BLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-
DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
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Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start
of each source file to most effectively convey the exclusion of warranty; and each file should have
at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than
‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever suits your
program.

You should also get your employer (if you work as a programmer) or your school, if any, to
sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary

programs. If your program is a subroutine library, you may consider it more useful to permit

linking proprietary applications with the library. If this is what you want to do, use the GNU

Lesser General Public License instead of this License.

A.2 GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

http://fsf.org/
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Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats



Appendix A: Licenses 62

suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifi-
cation. Examples of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.
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If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
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section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”
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6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.
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10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See http://
www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server. A
“Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/
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ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.
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